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1 Introduction
A classic question in extremal graph theory is: how large can a graph be before it necessarily has property
A? For example, when property A is “contains a copy of the complete graph on k vertices, Kk,” this is
famously answered by Turán’s Theorem.

Theorem 1.1 (Turán’s Theorem, [Tur41]). Every n-node graph that does not contain Kr+1 as a subgraph
has at most

(
1− 1

r

)
· n

2

2 edges.

The complete r-partite graph with (almost) equal-sized parts shows that this bound is tight. A second
important example is that of Ramsey properties: what is the smallest k such that any 2-coloring of the edges
of Kk contains a monochromatic triangle?

These sorts of extremal questions remain well-motivated even in a non-deterministic setting. Let G(n, p)
be the Erdős-Rényi random graph on n nodes, where each edge is added independently with probability p
[ER60]. One way to formulate such questions in this random setting is to ask the following: how large does p
need to be (as a function of n) so that G(n, p) has property A with high probability? In trying to rigorously
analyze questions of this type, threshold phenomena naturally emerge. We define a sequence of probabilities
p̂ to be a threshold for a property A if, for any p ≪ p̂, the probability that G(n, p) ∈ A tends to 0 and,
for p ≫ p̂, the probability that G(n, p) ∈ A tends to 1. A priori, it is not even immediately obvious which
properties have thresholds. Certainly some properties do not: for example, the property defined by, for n
even, containing an edge, and, for n odd, having at least n2/4 total edges. But, imposing a little structure on
the properties, an important theorem of Bollobás and Thomason [BT87] implies that all nontrivial monotone
graph properties have a threshold. Here a property A is monotone if H ∈ A and H ⊆ G, then G ∈ A, and
it is nontrivial if it is neither the empty set nor all graphs. The properties “contains a copy of Kk” and “any
2-coloring of the edges contains a monochromatic copy of H,” for any fixed graph H, are both nontrivial and
monotone and hence have thresholds.

However, Bollobás and Thomason’s theorem is purely existential. As such, considerable efforts were
made to actually identify the threshold functions of important monotone properties in subsequent work. For
example, in the sequence of papers [RR93, RR94, RR95], Rödl and Ruciński completely determined the
threshold for being r-Ramsey for any fixed graph H. (That is, the property “any r-coloring of the edges
contains a monochromatic copy of H.”)

While these lines of work resolved some of the questions about the existence and locations of thresholds,
it is also interesting to consider their more granular properties. To motivate this, we revisit the original paper
of Erdős and Rényi introducing G(n, p) [ER60]. In that paper, they showed that p = n/ log n is a threshold
for G(n, p) being connected. More specifically, they showed that, for all 1 > ε > 0, if p = (1+ε)n/ log n then
G(n, p) is asymptotically almost surely connected and, if p = (1−ε)n/ log n, G(n, p) is asymptotically almost
surely not connected. That is, the threshold for connectivity is sharp; perturbing the threshold probability
by a constant factor toggles the probability of obtaining the property from 0 to 1. This is in contrast with
properties with a coarse threshold, such as containing a triangle.

Although it is relatively straightforward to prove sharpness of the thresholds for certain properties—
connectivity, for example—for many years proving sharp thresholds for Ramsey properties seemed entirely
out of reach. That is, until Friedgut gave an immensely powerful characterization of all properties with a
coarse threshold [FB+99]. Soon after, in a breakthrough paper, Friedgut et al. managed to combine Friedgut’s
criterion with a sparse generalization of the Szemerédi regularity lemma to prove that being 2-Ramsey for a
triangle has a sharp threshold [FRRT03].

More than 10 years later, sharp thresholds were proved for a variety of other Ramsey properties (see
for example [SS18]), leveraging the strength of the hypergraph container lemma [BMS18, ST15]. Recently,
Friedgut et al. [FKSS22] established a unifying framework for proving sharp thresholds for a multitude of
these properties using the hypergraph container lemma, including the original result of [FRRT03].

The goal of this exposition is to give a largely self-contained proof that the property of being 2-Ramsey
for a triangle has a sharp threshold (Theorem 6.1). Along the way, we introduce and apply a plethora of
broadly applicable powerful tools. This includes:

• Friedgut’s criterion for symmetric monotone properties with a coarse threshold (Theorem 3.2), along
with its more practical dichotomy corollary (Theorem 3.16).
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• Fourier analytic methods (introduced in Definition 3.1 and Proposition 3.3).

• The hypergraph container lemma (Theorem 4.3).

• Janson’s inequality (Theorem 2.1).

The proof of Friedgut’s criterion makes heavy use of Fourier analysis and relies crucially on the idea of
so-called “modest” graphs, notions developed in Sections 3.1 and 3.2, respectively. The core of the proof of
Friedgut’s criterion, which we sketch in Section 3.3, involves a series of approximations of the characteristic
function of a monotone symmetric property with a coarse threshold, with the final approximation being
the characteristic function of an approximating property. Section 3.4 focuses on reframing the result in
preparation for applying it in the proof of Theorem 6.1.

Section 4 is entirely devoted to the hypergraph container lemma (Theorem 4.3). Besides introducing the
container lemma and breaking down all of its moving parts, we give a short proof of the upper bound on
thresholds for the property of being Ramsey for a triangle as a warmup application.

In Section 5, we analyze the hypergraph of triangles in Kn in considerable detail, developing some of its
key properties used in the proof of Theorem 6.1 in the subsequent section.

Finally, in Section 6, we combine all of these tools to give a proof that the property of being 2-Ramsey
for a triangle has a sharp threshold. The starting point is the dichotomy corollary of Friedgut’s criterion,
Theorem 3.16, and we spend Section 6.1 introducing notation to properly leverage this result. We also
derive several simple, useful consequences. In Section 6.2 we carefully construct a hypergraph and apply the
container lemma to said hypergraph to facilitate a more efficient union bound over colorings of our random
graph. The purpose of Section 6.3 is then to effectively take advantage of this union bound, again making use
of the container lemma. We complete the proof in Section 6.4, leveraging the power of Janson’s inequality.

2 Preliminaries
In this section we formally establish some of the notation, definitions, and tools we will use throughout.

Asymptotic Notation. Let f, g : N → R>0. If there exists some constant c > 0 and n0 ∈ N large enough
such that, for all n ≥ n0, f(n) ≤ c · g(n), then we write f = O(g) and g = Ω(f). If f = O(g) and f = Ω(g),
then f = Θ(g). We will often write f = O(1) and f = Ω(1), where 1 here means the constant function 1. If

lim
n→∞

f(n)/g(n) = 0,

then f = o(g) and g = ω(f).

Graphs. Let G be a (hyper)graph. We use V (G) to denote its vertex set, E(G) to denote its edge set,
v(G) to denote the number of vertices in G, and e(G) or |G| to denote the number of edges in G.

Random graphs. Let n be an integer and p ∈ [0, 1]. All of our random graphs will be generated via
the Erdős-Rényi random graph model G(n, p). Namely, each edge of the complete graph on n vertices is
added independently with probability p. Technically G(n, p) is a product probability space, but we will often
abuse notation to consider it as a graph for convenience. When we do treat G(n, p) as a probability space,
A ⊆ G(n, p) denotes a subset of the edge subgraphs of Kn, µp is the product measure on the space, and
µp(A) is the measure of A. Alternatively, µp(A) is the probability that G(n, p) is exactly one of the edge
subgraphs in A.

Graph properties. A (graph) property is a subset of

∞⋃
n=2

P(E(Kn)).

A property A can then also be viewed as a sequence of sets (or function of n) A2, A3, . . . where An =
A ∩ P(E(Kn)), the graphs G with property A and v(G) = n. As stated in the introduction, a property is
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monotone if H ∈ A and H ⊆ G implies G ∈ A. A property is nontrivial if it is neither the empty set nor all
graphs.

A sequence of probabilities p = p(n) is a threshold for a property A if, for p′ = o(p),

lim
n→∞

Pr[G(n, p′) ∈ A] = 0

and, for p′′ = ω(p),
lim
n→∞

Pr[G(n, p′′) ∈ A] = 1.

By a celebrated theorem of Bollobás and Thomason [BT87], all nontrivial, monotone properties have
a threshold. Such properties can be further categorized by their probabilistic behavior near the threshold
probability. We say a property A has a sharp threshold (or is sharp) if, for p a threshold for A, for all
1 > ε > 0,

Pr[G(n, (1− ε)p̂) ∈ A] = o(1)

and
Pr[G(n, (1 + ε)p̂) ∈ A] = 1− o(1).

Otherwise, we say the property A has a coarse threshold (or is coarse).
Most natural properties are also symmetric. That is, if G ∈ A and v(G) = n, then, for any automorphism

π of the complete graph Kn, π(G) ∈ A. Stated differently, the property is independent of the choice of
labellings of the vertices in how we generate graphs via the G(n, p) model.

Janson’s Inequality. Janson’s inequality gives a strong upper bound on the tail probabilities of random
variables counting the number of sets from a given collection are contained in a binomially generated random
subset (e.g., G(n, p)). Let (A1, . . . Ak) be a sequence of (not necessarily distinct) events. Let X =

∑k
i=1 1Ai .

Then,

Var(X) = E[X2]− (E[X])2

≤
∑

Ai∼Aj

E[1Ai1Aj ]

=
∑

Ai∼Aj

Pr[Ai ∩Aj ],

where Ai ∼ Aj if the events Ai and Aj are dependent (and the sum over Ai ∼ Aj varies over i, j ∈ [k],
including when i = j). The upper-bound on Var(X)

Var′(A1, . . . Ak) :=
∑

Ai∼Aj

Pr[Ai ∩Aj ]

is the pseudo-variance of (A1, . . . Ak). We can now state Janson’s inequality.

Theorem 2.1 (Janson’s inequality [Jan90]). Let Ω be a finite set, and let B1, . . . Bk be a sequence of (not
necessarily distinct) subsets of Ω. Let p ∈ [0, 1] and let R ⊂ Ω be generated by keeping each element of Ω
independently with probability p. For each i ∈ [k], let Ai be the event that Bi ⊆ R. Let X =

∑k
i=1 1Ai .

Then, for all 0 ≤ t ≤ E[X],

Pr[X ≤ E[X]− t] ≤ exp

(
−t2

2Var′(A1, . . . , Ak)

)
.

3 Friedgut’s Criterion for Properties with a Coarse Threshold
We begin by motivating and contextualizing Friedgut’s criterion. One rather simple graph property is that
of containing a triangle. It is not hard to show that the property is coarse; intuitively this is a result of the
limited dependence between different triangles in Kn. Similarly “local” properties, e.g., properties defined
by containing a member of a finite list of bounded subgraphs, have a similarly bounded dependency between
occurrences of those bounded subgraphs in Kn. It turns out that properties defined in such a way always
have coarse thresholds. We can prove this by a coupling argument.
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Lemma 3.1 (Lemma 4.6 of [FKSS22]). Let K > 0 be a constant. Let H1, H2, . . . Hℓ be graphs with |Hi| ≤ K
for all i ∈ [ℓ], and let A be the (monotone symmetric) graph property defined by G ∈ A if and only if Hi ⊆ G
for some i ∈ [ℓ]. Then, A has a coarse threshold.

Proof. Let µp(A) = Pr[G(n, p) ∈ A], as usual. Now, fix c ∈ (0, 1) and consider µcp(A). By viewing the
random graph G(n, cp) as a random subgraph of a random graph drawn from G(n, p) (with each edge kept
independently with probability c), it is clear that µcp(A) ≥ cK ·µp(A). This is because for each random graph
G(n, p) ∈ A, the coupled random subgraph G(n, cp) still contains an Hi subgraph with probability at least
cK . Hence, letting p be a threshold probability for A (e.g., such that µp(A) = 1/2), the result follows.

With the sufficient condition for coarse thresholds given by Lemma 3.1 in mind, consider the following:

Conjecture 3.1 (Ludicrously optimistic conjecture). Let A be a monotone symmetric graph property with
a coarse threshold. Then, there is a finite list of bounded subgraphs H1, H2, . . . ,Hℓ such that G ∈ A if and
only if Hi ⊂ G for some i ∈ [k].

That is, all monotone symmetric graph properties with coarse thresholds can be characterized locally by
checking containment of bounded size subgraphs. Unforunately, Conjecture 3.1 is false.

Example 3.1 (Combining properties with coarse and sharp thresholds). A simple idea for building a coun-
terexample to Conjecture 3.1 is to take the intersection of two monotone symmetric graph properties A1 and
A2, with A1 having a sharp threshold and A2 having a coarse threshold. If the the threshold for A1 is lower
than the threshold for A2, then the monotone symmetric property determined by A1 ∩A2 will have a coarse
threshold at the threshold of A2. This is because, in order to have property A2, we must be at the threshold
for A2, and, around that threshold, we will have property A1 with probability 1 − o(1). Crucially, if A1 is
a property not determined by containing bounded size subgraphs, then A1 ∩ A2 will be a property with a
coarse threshold not determined by containing bounded size subgraphs.

Concretely, let A1 be the property of being connected and A2 tbe property of containing a copy of K4.
As mentioned in the introduction, the former famously has a sharp threshold at p = logn

n [ER60]. The latter
has a coarse threshold by Lemma 3.1, and, since there are Θ(n4) copies of K4 in Kn and each is added
with probability p6, by Markov’s inequality, the threshold probability for containing a K4 must be Ω(n−2/3).
Hence, the property of being connected and containing a K4 has a coarse threshold but is not determined
by containing a subgraph from a list of bounded size subgraphs. This disproves Conjecture 3.1.

Surprisingly however, Conjecture 3.1 is not far from the truth. Let A be a monotone symmetric property.
Suppose that A has a coarse threshold. Let p = p(n) be a threshold probability for A so that µp(A) is
bounded above and below by a constant. To understand A, it would be enough to understand another
monotone symmetric graph family B such that µp(A∆B) is arbitrarily small, where A∆B is the symmetric
difference of the sets A and B. Then, up to rare events, checking membership in B suffices for checking
membership in A. Excitingly, by adopting this more flexible view, our dream from Conjecture 3.1 is now a
reality:

Theorem 3.2 (Friedgut’s Coarse Threshold Criterion [FB+99]). Fix ε > 0. There exists a function k(ε, c)
such that, for any n and any monotone symmetric family of graphs A on n vertices with a threshold probability
p such that p · µ′

p(A) ≤ c, there exists another monotone symmetric family of graphs B such that:

1. The maximum size of a minimal subgraph in B is bounded by k(ε, c), and

2. µp(A∆B) ≤ ε.

In the statement of Theorem 3.2, µ′
p(A) is the derivative of the function µp(A) with respect to the

parameter p. A minimal subgraph in B is one not containing any other members of B as a strict edge
subgraph. Before we strive to understand why Theorem 3.2 is true, we consider why it achieves our dream.
First of all, why does this say anything at all about graph properties with coarse thresholds?

Remark 3.1. Let A = A(n) be a monotone graph family with a coarse threshold. Then, there is some
threshold probability p̂ and some constants 1 > c, ρ > 0 such that ρ < µcp̂(A) < µp̂(A) < 1− ρ.

Now, consider the function µp(A) on the interval [cp̂, p̂]. The average slope on the interval is at most
(1−2ρ)/((1−c)p̂). Hence, there exists some threshold probability p in the interval [cp̂, p̂] such that p·µ′

p(A) ≤
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(1−2ρ)/(1− c). That is, by the coarseness assumption on A, there is some threshold probability p satisfying
that p · µ′

p(A) is bounded by a constant. We will implicitly consider such a p throughout our discussion of
Friedgut’s criterion. See Figure 1.

p̂cp̂

p

0 1

µp(A)

0

1− ρ

ρ

1

Figure 1: Plot of p versus µp(A) from Remark 3.1.

Now, for a fixed property A, ε and c are constants, so that all minimal subgraphs in B are a subset of
all graphs on at most k(ε, c) edges. Up to isomorphism, this is a constant number of graphs. Monotonicity
then means then that there is some finite sublist H1, H2, . . . ,Hℓ of these graphs on at most k(ε, c) edges
such that G ∈ B if and only if Hi ⊂ G for some i ∈ [ℓ]. That is, B is one of the simple monotone graph
families described in Conjecture 3.1!

3.1 Boolean Fourier analysis
The proof of Friedgut’s criterion makes heavy use of Boolean Fourier analysis. In this section, we introduce
some basic definitions and consequences of those definitions. Consider the vector space of functions from
{0, 1}(

n
2) → R, viewing these functions as functions from all subgraphs of Kn to R. The most important

function we will consider from this vector space is the characteristic function of a set. Namely, for A ⊂
{0, 1}(

n
2), its characteristic function 1A satisfies:

1A(H) =

{
1 if H ∈ A,

0 if H ̸∈ A.

A simple basis for this vector space is the standard one composed of the functions that are 1 on a single
element of {0, 1}(

n
2) → R and 0 on the rest; the existence of this basis shows that this space has dimension

2(
n
2).
However, it turns out that there is a much more convenient basis to consider in the context of properties

of G(n, p) and the corresponding probability measure µp. This is the Fourier basis, attributed in this setting
to Talagrand [Tal94]. For convenience, we define q := 1− p.

Definition 3.1 (Fourier basis). Let U∅ be the all-ones function. Then, for e ∈ E(Kn), define

Ue(H) =

{
−
√
q/p if e ∈ H;√

p/q if e ̸∈ H.

For all other edge subgraphs R ⊆ Kn, define

UR(H) =
∏
e∈R

Ue(H).
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The collection of functions UR, for R ⊆ Kn, form the Fourier basis of {0, 1}(
n
2) → R with respect to

the natural inner product on the measure space G(n, p). That is, the inner product ⟨·, ·⟩ defined by, for
f, g : G(n, p) → R,

⟨f, g⟩ =
∑
H⊆Kn

f(H)g(H)µp(H).

Proposition 3.3. The family of functions UR, for R ⊆ Kn, form an orthonormal basis of the space of
functions from G(n, p) → R.

Proof. First, note that for all e ∈ Kn, Ue satsifies EH∼G(n,p)[Ue(H)] = 0 and EH∼G(n,p)[Ue(H)2] = 1. Now,
let R,S ⊆ Kn. Then,

⟨UR, US⟩ = EH∼G(n,p)[UR(H) · US(H)]

= EH∼G(n,p)

[∏
e∈R

Ue(H) ·
∏
e∈S

Ue(H)

]
.

Then, by independence of the edges in G(n, p), we have ⟨UR, US⟩ = 1 if R = S and 0 otherwise.

Now, for f : G(n, p) → R, its Fourier coefficients are just the coefficients of its Fourier basis vectors when
expressed in terms of the Fourier basis:

f̂(H) := ⟨f, UH⟩,

for H ⊆ Kn. Then,
f =

∑
H⊂Kn

f̂(H)UH .

We can define Lr-norms with respect to the measure µp. That is,

∥f∥rr := EH∼G(n,p)[|f(H)|r] =
∑
H⊂Kn

|f(H)|rµp(H).

Then, the following is a simple consequence of Proposition 3.3.

Proposition 3.4 (Parseval’s Identity). Let f : G(n, p) → R. Then,

∥f∥22 = EH∼G(n,p)[f(H)2] =
∑
H⊆Kn

f̂2(H).

The following remark is specifically relevant to our discussion of Theorem 3.2.

Remark 3.2 (Bound on the Fourier coefficients of a characteristic function). Let A be the restriction of a
symmetric monotone graph property onto edge subgraphs of Kn. Note in particular that

µp(A) = ∥1A∥22 =
∑
S⊆Kn

1̂A(S)
2.

Hence, for each edge subgraph S ⊆ Kn, 1̂A(S)2 ≤ µp(A) ≤ 1, so |1̂A(S)| ≤ 1. Define O(S) to be the orbit
of S under automorphisms of Kn. Then, by symmetry of 1A, using that 1̂A(S) = 1̂A(S

′) for S′ ∈ O(S), we
also have

|1̂A(S)| ≤ 1/
√
|O(S)|.

We will make repeated use of the strategy of treating the orbit of S ⊆ Kn all at once and applying the
symmetry assumption. For this reason, we introduce one more piece of notation.

Definition 3.2. Let VS :=
∑
H∈O(S) UH , that is, the sum over all Fourier basis vectors corresponding to

subgraphs of Kn isomorphic to S.

To reiterate, for a monotone symmetric property A, by symmetry, ⟨1A, US⟩ = ⟨1A, UH⟩ for all H ∈ O(S).
As such, we can decompose the Fourier expansion of 1A in terms of the VS ’s instead of UH ’s.
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3.2 Modest graphs
At the heart of Friedgut’s proof of Theorem 3.2 is the notion of modest graphs. To properly define them, we
first need a few definitions.

Definition 3.3 (Balanced graphs). Let G be a graph. Then, G is balanced if, for all nonempty subgraphs
H ⊆ G, the average degree of H is at most the average degree of G. If this inequality is strict for all nontrivial
subgraphs, we say that G is strictly balanced.

Example 3.2 (Balanced and unbalanced graphs). All regular graphs are balanced. This is because the
maximum average degree of a subgraph of a k-regular graph H is k, and H itself has average degree k. In
contrast, every graph H with a node of degree strictly less than the average degree is unbalanced, since
removing that node increases the average degree.

Closely related to the notion of balanced graphs is the expected number of occurrences of the graph in
G(n, p).

Definition 3.4 (Expected number of occurrences of a subgraph). Let G ⊆ Kn. Define

E[G] := E[|{G′ ∈ O(G) : G′ ⊆ G(n, p)}|].

We are now ready to define modest graphs.

Definition 3.5 (Modest graphs). Given constants c1, c2, L > 0, call a graph G (c1, c2, L)-modest if c1 ≤
E[G] ≤ c2, |G| ≤ L, and G is balanced. When the choice of the constants is apparent from context, we
simply call G a modest graph.

The graph property B we will build approximating the property A will have small unions of modest
graphs as its minimal graphs. Since L is a constant, given a choice of c1, c2, and L, there are a constant
number of total modest graphs up to isomorphism. We can enumerate them: S1, . . . , Sℓ.

Remark 3.3. In general, given a graph H, E[H] = |O(H)|p|H|. But, assuming p = o(1), if |H| is a constant,
then E[H] = Θ(nv(H)p|H|). Suppose p(n) = n−1/δ and we wish to have E[H] = Θ(1). Then, we must have
v(H) = |H|/δ, i.e., H must be average degree 2δ for n large enough. Hence, asymptotically, our constraints
on modest graphs determine their average degree too.

Moreover, if E[H] = O(logk n) for some k, any graph G with |G| bounded by a constant having E[G] =
Θ(1) implies that E[H] = O(1). This is because G being of constant size and E[G] = Θ(1) means p =

Θ(n−
v(G)
|G| ).

Why are modest graphs the right object to consider? Consider the Fourier expansion of the characteristic
function f := 1A:

f =
∑
H

f̂(H)UH .

We will construct the monotone property B approximating A by devising a series of approximations of f ,
with the last approximation being the characteristic function of B. The first step in approximating f will
be to drop the terms in its Fourier expansion which do not correspond to modest graphs, applying Lemma
3.5.

Lemma 3.5 (Lemma 4.2 of [FB+99]). Let A be a monotone symmetric family of graphs of n vertices, and
let f = 1A be its characteristic function. Suppose that p · µ′

p(A) ≤ c, for some constant c. Then, for all
ε > 0, there exists c1, c2, L and sufficiently large n such that∑

H not (c1,c2,L)-modest

f̂2(H) ≤ ε.

Namely, by Parseval’s identity, this means the total contribution of non-modest graphs to ∥f∥1 = ∥f∥22
can be made arbitrarily small. Several important ingredients go into proving Lemma 3.5; these are the basis
for each property of modest graphs.
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Bounding the size of modest graphs. The fact that we can bound the size of modest graphs is a
consequence of a more general lemma:

Lemma 3.6 (Lemma 2.3 of [FB+99], [Tal94]). q · p · µ′
p(A) =

∑
H f̂

2(H)|H|.

As an immediate corollary, we have:

Corollary 3.7.
∑
H:|H|≥L f̂

2(H) ≤ q·p·µ′
p(A)

L .

Crucially, since A is a monotone graph property with a coarse threshold, we will have p ·q ·µ′
p(A) bounded

by a constant. Then, we can choose an appropriately large constant bound L on the sizes of our graph to
ensure that the remaining graphs have arbitrarily low contribution to ∥f∥22.

Lower bounding the expectation of modest graphs. In order to lower bound the expectation of
modest graphs, we simply need to show that the total contribution of graphs with sufficiently low expectation
is negligible. Lemma 3.8 shows the total contribution of the orbit of a graph to the Fourier expansion of f
can be bounded by a multiple of the expected number of occurrences of that graph.

Lemma 3.8. Let G be a graph with |G| ≤ L. Then, for sufficiently large n and p = o(1),∑
S∈O(G)

f̂2(S) ≤ 22L · E[G].

Proof. Let S ∈ O(G). We first bound f̂2(S) = ⟨f, US⟩2. We have

|f̂(S)| ≤
∑
H⊆S

(
q

p

)|H|−|S|/2

p|H|q|S|−|H|

≤ p|S|/2q|S|/22|S| ≤ 2Lp|G|/2,

So, f̂(S)2 ≤ 22L · p|G|. Now, ∑
S∈O(G)

f̂2(S) ≤ |O(G)| · 22L · p|G| = 22L · E[G].

Since from the previous section we can bound the size of the graphs we consider by a constant, there
are only a constant number of possible non-isomorphic graphs. Hence, we can set a constant lower bound
threshold on the expected number of occurrences of a graph so that ignoring the contribution of all graphs
of bounded size with lower expected number of occurrences has a negligible effect on our approximation of
f .

The balanced condition of modest graphs. The balanced condition of modest graphs is a consequence
of the constant upper bound of the expected number of occurrences of modest graphs. This comes from
Lemma 3.9. For ease of notation, we establish the convention that the expectation of the empty graph is 1.

Lemma 3.9 (Lemma 4.4 of [FB+99]). Let H be a graph with |H| ≤ L for some constant L. Then, for some
some c > 0, for every strict edge subgraph H ′ ⊊ H,∑

S∈O(H)

f̂2(S) ≤ c · max
R⊊H′

{E[H ′]/E[R]}.

Now, suppose that E[H] ≤ c2 for some constant c2. Suppose additionally that H is not balanced. Namely,
then there exists a minimal subgraph H ′ ⊊ H with the average degree of H ′ strictly greater than the average
degree of H and strictly greater than all strict subgraphs of H ′ (this second condition means H ′ is strictly
balanced). But then E[H ′] = o(1) and E[H ′] = o(E[H ′′]) for all H ′′ ⊊ H ′. So, by Lemma 3.9, the total
contribution of O(H) to the Fourier expansion of f is trivial.
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Remark 3.4. We will not prove Lemma 3.9, but the intuition is as follows. The order of the expected
number of copies of a fixed graph H appearing in G(n, p) depends only on its average degree. Nonetheless,
higher average degree graphs are rarer, so, intuitively, the distribution of unbalanced graphs is skewed by
the rarity of their denser subgraphs. Indeed, if H appears in G(n, p), all of its lower expectation subgraphs
do as well. This skewed distribution is realized in the smaller contribution of the Fourier coefficients of the
orbit of bounded unbalanced graphs to ∥f∥22 .

Upper bounding the expectation of modest graphs. The last step in proving Lemma 3.5 is then to
upper bound the expected number of occurrences of graphs whose orbit has nontrivial contribution to the
Fourier expansion of f .

Lemma 3.10. Suppose that H ⊆ Kn such that∑
R∈O(H)

f̂(R)2 = Ω(1),

and |H| ≤ L, for some constant L. Then, E[H] = O(1).

Again the proof is rather technical, so we only provide a sketch of the argument.

Proof sketch. Let H̃ be the subgraph of H with E[H̃] minimal and suppose∑
R∈O(H)

f̂(R)2 ≥ C1.

By a fourth moment estimate it is possible to bound E[H̃] above by a constant depending on C1.
There are then three cases. If H̃ is a single edge, since it has bounded expectation, p ∼ C2/n

2 for some
constant C2. All bounded H have E[H] = O(1) for this choice of p. When H̃ = H, we are done by the
fourth moment estimate.

The third and final case is when H̃ ⊊ H, but H̃ is not a single edge. By Lemma 3.9, we know that
H̃ must be balanced. We can further assume H̃ is strictly balanced by shifting our attention to a minimal
subgraph of H̃ of the same average degree (this only changes the expectation by a constant). Hence, we
must have E[H̃] = Ω(1) by Lemma 3.8.

The key insight is that, by fixing a copy of H̃ and considering the probability space with those edges fixed,
it is possible to iterate this argument on the graph H \ H̃. Namely, the minimal expectation subgraph of
H \ H̃ in this new probability space will have constant bounded expected number of occurrences. Repeating
only at most a constant number of times (since |H| ≤ L), we will get that H is a disjoint union of graphs
with a constant bounded expected number of occurrences. This then implies E[H] = O(1), as desired.

3.3 Approximating the characteristic function
To prove Theorem 3.2, we prove a sequence of approximations of f and ultimately round f to another function
g, the characteristic function of a monotone symmetric property B approximating A. These approximations
will take advantage of the notion of modest graphs. While we will state all of the main lemmas required, we
will blackbox some of their proofs.

Recall that we may enumerate all modest graphs S1, S2, . . . , Sℓ, for some appropriately chosen constant
parameters c1, c2, and L. For any graph S, define CS to be the collection of graphs G such that the union
of all modest subgraphs contained in G is S. See Figure 3.3 for an example. Note that the CS partition the
subgraphs of Kn. Also note that, if G ∈ CS , then S ⊆ G. We will see that this partition has several other
convenient properties after applying a few initial approximations to f (see Lemma 3.11).
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CK3· · ·

· · ·

CK4\{e}

Figure 2: Examples of CK3
and CK4\{e} for modest graphs being 2-regular. Edges of modest subgraphs are

colored in red.

Restricting to Fourier coefficients corresponding to modest graphs. Our first appproximation of
f , g1, is the restriction of the Fourier expansion of f to the terms corresponding to modest graphs. Namely,

g1 =
∑

S modest

f̂(S)VS ,

with modesty defined for an implicit, appropriate choice of constants c1, c2, and L and VS as defined in
Definition 3.2. In particular, by Lemma 3.5, for any ε > 0, there is a choice of c1, c2, and L such that

∥f − g1∥22 =
∑

S immodest

f̂2(S) ≤ ε.

Restricting to graphs containing a bounded number of modest graphs. A crucial property of a
modest graph S is that E[S] ≤ c2, where c2 is a constant. By Markov’s inequality, having more than ℓc2/ε
copies of any particular modest graph Si happens with probability at most ε/ℓ. By the union bound, the
probability that more than ℓc2/ε copies of any of the ℓ modest graphs appear is then at most ε.

Now, consider S such that S is the union of modest graphs and S contains more than ℓc2/ε copies of
some modest graph Si. The appearance of any graph in CS is a certificate for the rare event of more than
ℓc2/ε copies of Si occurring. Hence, the total probability measure of all such CS must be at most ε. Let the
union of all such CS be C1. Define our second approximation of f , g2, such that

g2(S) =

{
g1(S) if S ̸∈ C1;
1 otherwise.

Namely,
∥f − g2∥22 ≤

∑
S∈C1

µp(S) · 1 + ∥f − g1∥22 ≤ 2ε.

Removing graph classes of low measure. Consider the graphs remaining after removing the graphs
in C1 from the previous step. Note that these are covered by a finite number of parts M from the partition
induced by the CS ’s since the size of the union of the modest graphs contained in them is bounded from
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the previous step. Hence, we can define g3 to be g2 except we set g3 to be 1 on graphs H ∈ CS such that
µp(CS) ≤ ε/M . Denote the union of CS such that µp(CS) ≤ ε/M as C2. Namely, then

∥g3 − f∥22 ≤
∑
S∈C2

µp(S) · 1 + ∥f − g2∥2 ≤ 3ε.

Let C be the union of the remaining CS not contained in C1 or C2. At this point, we observe several other
useful properties of partitioning the subgraphs of Kn by the union of the modest graphs contained in them.

Lemma 3.11. Let CS ⊆ C such that CS ̸= ∅ (i.e., S can be formed as a union of modest graphs). Then,

1. S has the same average degree as the modest graphs.

2. S is balanced.

3. There exist constants c′1 and c′2 such that, for all such S, c′1 ≤ E[S] ≤ c′2.

Proof. Since S is an edgewise union of modest graphs, it has average degree at least the average degree of
the modest graphs, δ. If S has average degree strictly greater than δ, then E[S] = o(1) since the size of S
is bounded by a constant (see Remark 3.3). But, then µp(CS) = o(1) by Markov’s inequality, so we remove
CS when removing C2.

Then, since S has average degree δ, S must be a vertex disjoint union of modest graphs. Since modest
graphs are balanced and any subgraph of S is then a vertex disjoint union of subgraphs of modest graphs,
the average degree of any subgraph of S is at most δ (and S is balanced).

The final property is an immediate consequence of S having average degree δ and the number of possible
S being bounded a constant (M) as a result of CS ⊆ C and CS ̸= ∅.

Uniformizing the approximation. The next modification uniformizes the approximation of f in prepa-
ration for rounding it to a characteristic function of a symmetric graph property. For CS ⊆ C with CS ̸= ∅,
for all H ∈ CS , set

g4(H) = E[g3|CS ].

For H ̸∈ C, set g4(H) = g3(H) = 1. It turns out that this uniformization does not substantially weaken the
approximation of f :

Lemma 3.12 (Lemma 4.14 of [FB+99]). For all τ > 0, for CS ⊆ C with CS ̸= ∅,

lim
n→∞

µp({H : |g3(H)− E[g3|CS ]| > τ,H ∈ CS}) → 0.

Because there are only M total sets CS ⊆ C, for any τ, ρ > 0, there exists n large enough so that

µp({H : |g3(H)− E[g3|CS ]| > τ,H ∈ CS}) ≤ ρ

for all CS ⊆ C. Additionally, observe that, for H ∈ C, µp(H) · g3(H)2 is uniformly bounded since ∥g3∥2 is
bounded by the triangle inequality (using that ∥f∥2 ≤ 1). Hence, µp(H) · |g3(H)| is also uniformly bounded.
Thus, since for each CS ⊆ C, µp(CS) ≥ ε/M , |E[g3|CS ]| is bounded by a constant, so |g4| is bounded by
some constant C. Then,

∥f − g4∥22 ≤ (C + 1)2 · ρ+ 3ε+ (3ε+ τ)2 ≤ 4ε,

for ρ and τ sufficiently small.

Making the approximation Boolean. The next approximation of f , g5, will be a Boolean function
constant on each CS . For S such that CS ⊆ C nonempty, define g5 to be 1 on CS or 0 on CS , whichever
approximates g4 on CS better. For H ̸∈ C, set g5(H) = g4(H) = 1.

Lemma 3.13. ∥g5 − f∥22 ≤ 2 ∥g4 − f∥22 .
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Proof. Let h be the best approximation of f which is constant on each CS (with respect to ∥·∥2). We will
compute the value of h directly. If h takes constant value x∗ on CS , then x∗ must minimize the equation

(1− x)2µp({H : f(H) = 1} ∩ CS) + x2µp({H : f(H) = 0} ∩ CS),

so,

x∗ =
2µp({H : f(H) = 1} ∩ CS)

2µp(CS)
= µp(f(H) = 1 : H ∈ CS).

Note also that if µp(f(H) = 1 : H ∈ CS) > 1/2 then g5 must be 1 on CS and if
µp(f(H) = 1 : CS) < 1/2 it must be 0 (and otherwise g5 can be assigned a Boolean value on CS arbitrarily).
The contribution of CS to ∥f − h∥22 is

µp(CS)(µp(f(H) = 1 : CS)(1− x∗)
2 + (1− µp(f(H) = 1 : CS))x

2
∗) = µp(CS) · x∗(1− x∗).

In contrast, the contribution of CS to ∥f − g5∥22 is

µp(CS)min(µp(f(H) = 1 : CS), 1− µp(f(H) = 1 : CS)) = µp(CS) ·min(x∗, 1− x∗).

which is at most 2 times the contribution of CS to ∥f − h∥22. Hence,

∥f − g5∥22 ≤ 2 ∥f − h∥22 ≤ 2 ∥f − g4∥22 ,

as desired, using that g4 is constant on each CS .

We then get that g5 is a good approximation of f as a consequence of g4 being a good approximation of
f . Namely, ∥g5 − f∥22 ≤ 8ε.

Making the approximation monotone. Our approximation g5 is now a characteristic function, but
may not yet be monotone. This is the final piece of the puzzle in proving Theorem 3.2. Note that g5 is
symmetric since g5 is constant on each CS and, if H ∈ CS , then O(H) ⊆ CS . Our next approximation of f
will be defined to be both Boolean and monotone. Consider the graphs S such that

Pr[f(T ) = 1 : T ∈ CS ] ̸∈ (τ, 1− τ),

for an appropriately chosen τ . These graphs are convenient for the purposes of rounding; we can round each
such CS non-empty to its majority value while incurring a low penalty in our approximation (we will see
this formally momentarily). For this reason, call such S decisive.

The analysis of Lemma 3.13 shows that the union of CS over the set of indecisive graphs S has small
total measure. Call this set C3. Namely, each indecisive graph S contributes at least τ2µp(CS) to ∥f − h∥22.
So, the total contribution will be at least τ2µp(C3). This is bounded by 2 ∥f − g4∥22 ≤ 8ε, so µp(C3) ≤ 8ε/τ2.

Since µp(C1 ∪ C2 ∪ C3) ≤ 2ε + 8ε/τ2, we can make this arbitrarily small by choosing an appropriately
small ε. Then, we can modify f on these sets without sacrificing much in terms of our approximation. an
arbitrary modification would not ensure monotonicity.

As such, we define g6 so that g6 is 1 on CS if and only if S has some subgraph R with CR ̸⊆ C1 ∪C2 ∪C3.
This ensures monotonicity. Additionally, it turns out that g6 and g5 are actually equal on CS ̸⊆ C1 ∪ C2 ∪ C3
for an appropriate choice of τ , making it simple to analyze the approximation.

Lemma 3.14 (Consistency of decisive graphs, Lemma 4.8 of [FB+99]). If R ⊆ S and CR, CS ̸⊆ C1∪C2∪C3,
then

E[f |CR] ≥ 1− τ =⇒ E[f |CS ] ≥ 1− 2τ.

Now, let τ < 1/4 and suppose that CR ̸⊆ C1 ∪ C2 ∪ C3. Lemma 3.14 implies that, if g5 is 1 on CR, then,
if R ⊆ S and S is decisive, g5 is 1 on CS as well. So, we have

∥g6 − f∥22 ≤ µp(C1 ∪ C2 ∪ C3) + ∥f − g5∥22 ≤ 8ε+ 2ε+ 128ε = 138ε.

Letting ε′ = ε/138, we have that g6 is a characteristic function of a symmetric, monotone graph family B
with µp(A∆B) ≤ ε′. Crucially, the maximum size of a minimal subgraph in B is bounded by a constant.
Indeed, for CS ̸⊆ C1 ∪ C2 ∪ C3, for each H ∈ CS , S ⊆ H. Moreover, g(H) = 1 if and only if g(S) = 1 and |S|
is bounded by a constant by definition of C1 and the fact that modest graphs have constant bounded size.
These S such that CS ̸⊆ C1 ∪ C2 ∪ C3 and g(S) = 1 are exactly the minimal graphs in B. This completes the
proof of Theorem 3.2.
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3.4 A dichotomy corollary of Friedgut’s Coarse Threshold Criterion
In this section we derive a useful corollary of Theorem 3.2. This alternative form will play an integral role
in the proof that the property of being 2-Ramsey for a triangle has a sharp threshold.

Our first goal is to show that there are bounded size subgraphs of Kn which “boost” the probability of
having the monotone property indicated by f . In contrast to Theorem 3.2, these subgraphs are on a specific
set of edges, not some isomorphism class of subgraphs. This will come from a simple averaging argument.
First, observe that we could have defined g6 in the proof of Theorem 3.2 so that g6 is 1 on CS if and only if
there is a subgraph R ⊆ S with CR ̸⊆ C1 ∪ C2 ∪ C3 and E[f |CR] ≥ 1 − τ/2. This is because the additional
contribution to ∥g6 − f∥22 can be made negligible by making τ sufficiently small. The consequence of doing
this is that, then, for all CS for which g6(CS) = 1, we have E[f |CS ] ≥ 1− τ (using Lemma 3.14).

Fix some such S. Each element of CS has exactly one copy of S as a subgraph (or else the union of its
modest subgraphs will be larger than S). We can then partition CS into subsets Cs1 , Cs2 , . . . where s1, s2, . . .
enumerates all specific copies of S in Kn. By symmetry, E[f |Cs] = E[f |Cs′ ] for all s, s′ specific copies of S
in Kn. Additionally, the probability that H ∈ Cs given that H ∈ CS is equal for all specific copies of S, s.
Hence, for any specific copy s of S in Kn, we have

E[f |Cs] = E[f |CS ].

Fix some specific copy of S inKn, s. Let Bs be the space of graphs having s as a subgraph. Let Cs := CS∩Bs,
as above. Now, since E[f |Bs \ Cs] ≥ E[f |Cs] since A is a monotone property, we have

E[f |Bs] ≥ E[f |Cs] = E[f |CS ].

Namely, E[f |Bs] ≥ 1− τ . This motivates the following definition.

Definition 3.6 (Booster). Let A be a monotone graph property. Then, for p ∈ [0, 1], δ > 0, B ⊂ Kn is a
(p, δ)-booster if

Pr[G(n, p) ∪B ∈ A] ≥ Pr[G(n, p) ∈ A] + δ.

The graph s in the above discussion is a (p, ρ− τ)-booster for our monotone property A: its inclusion in
the random graph “boosts” the probability the random graph will have property A (here ρ is the absolute
constant depending only on A from Remark 3.1). Also, nothing about the above argument depended on the
choice of copy s, so all isomorphic copies of s are also (p, ρ− τ)-boosters.

Also, observe that some copy of S is contained in G(n, p) with at least constant probability. This is
because S is a disjoint union of modest graphs, and, hence, Θ(1) copies arise in expectation, |S| ≤ K for
some constant K, and, crucially, S is balanced. Disjointness comes from the removing low measure graph
classes step. As such, the pseudovariance of the number of copies of S arising in G(n, p) will be O(1).
(Consider squaring the sum of indicators for each fixed copy of S. The result is a sum of indicators of unions
of pairs of fixed copies of S with each union appearing a constant bounded number of times. The union of
the copies of S have average degree at least that of S, see Lemma 3.11, and there are a constant number of
unions up to isomorphism.) As such, by Janson’s inequality, we get that the probability that no copies of S
occur in G(n, p) is bounded by a constant away from 0.

We can now state a useful corollary of Friedgut’s result, following from the above discussion.

Theorem 3.15. Suppose that A is a nontrivial monotone property with a coarse threshold. Let ρ > 0 and
let p = p(n) such that for n sufficiently large, ρ ≤ µp(A) ≤ 1− ρ. Then, there there exists δ, η, and K such
that there is a family B of (p, δ)-boosters, each of size at most K, satisfying

Pr[B ⊆ G(n, p) for some B ∈ B] > η.

When we apply Theorem 3.15 to prove sharp thresholds using the hypergraph container method it will
be convenient to consider not only boosters, but those boosters that, when added to our random graph,
cause it to have the desired monotone graph property A. This inspires the following definition.

Definition 3.7 (Active Booster). Let A be a monotone graph property. A graph B ∈ B is an active booster
for H ⊆ Kn if H ∪B ∈ A.

14



We can now state an extremely useful consequence of Theorem 3.15.

Theorem 3.16 (Proposition 4.4 of [FKSS22]). Let A be a nontrivial, monotone graph property with a
coarse threshold. Let p̂ be such that µp̂(A) = 1/2. Then there exists positive constants ε, δ,K and sequence
of probabilities p = p(n) with p = Θ(p̂) such that:

1. For all families F of graphs with

Pr[H ∈ G(n, p) for some H ∈ F ] < ε,

there is a (p, δ)-booster of size at most K not in F .

2. For any family B of (p, δ)-boosters, sampling S ∼ G(n, p), the following hold with probability at least ε:

(a) Pr[S ∪G(n, εp) ∈ A] ≤ 1/2;

(b) at least ε|B| elements of B are active boosters for S.

The primary utility of the first implication in Theorem 3.16 is to facilitate pruning low probability
problematic candidate boosters. In the case of symmetric graph properties (the only kind we will consider),
we can then turn the (p, δ)-booster B0 guaranteed by the first condition into a large family of non-problematic
boosters of size at most K by just considering all copies of B0 contained in Kn. Symmetricity implies that all
are (p, δ)-boosters. We can also disregard problematic low probability instances of S sampled from G(n, p)
by leveraging the fact that the latter dichotomy conditions hold with probability at least ε.

Suppose we had a family B of (p, δ)-boosters, perhaps resulting from a procedure as described above. The
dichotomy in the second implication tells us that, apart from a low probability case, given our random graph
S sampled from G(n, p), unioning a random subgraph G(n, εp) with S only yields a graph with property A
with bounded probability. Meanwhile, a constant proportion of boosters in B are active, meaning that their
union with S yields a graph with property A. This is especially remarkable since the graphs in B are only
of constant size.

Proof of Theorem 3.16. Since A is a nontrivial, monotone graph property with a coarse threshold, there
exists constants ρ > 0, c1 < c2 with

ρ ≤ µc1p̂(A) ≤ µc2p̂(A) ≤ 1− ρ

on an infinite subsequence. We will need to apply a more careful version of the argument in Remark 3.1.
Define C := 4c2/(c2−c1). The following technical claim usefully allows us to say more than just µ′

p(A) ≤ C/p.

Claim 3.17 (Claim 4.5 of [FKSS22]). For all γ > 0, there exists p ∈ (c1 · p̂, c2 · p̂) such that

1. µ′
p(A) ≤ C/p and

2. µ(1+γ)p(A)− µp(A) ≤ C · γ.

Let p be as in Claim 3.17 with γ = ε. Now, let B be the family of (p, δ)-boosters from applying Theorem
3.15. Let B be a booster sampled uniformly at random from B. For S ⊆ Kn, define

g(S) := Pr
B
[S ∪B ∈ A]

and
h(S) := Pr[S ∪G(n, εp) ∈ A].

Note that, to show the second part of Theorem 3.16, all we need to do is show

Pr
H∼G(n,p)

[g(H) ≥ ε and h(H) ≤ 1/2] ≥ ε.
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We can do this using Markov’s inequality. Indeed,

Pr[g(G(n, p)) < ε] = Pr[1− g(G(n, p)) > 1− ε]

<
1− E[g(G(n, p))]

1− ε

≤ 1− µp(A)− δ

1− ε
.

The first inequality is Markov’s inequality, and the second uses the definition of a (p, δ)-booster. Next,
observe that if S ⊆ Kn such that S ∈ A, then h(S) = 1, by monotocity of A. Also observe that for any
γ > 0,

Pr[G(n, (1 + γ)p) ∈ A] ≥ Pr[G(n, p) ∪G(n, γp) ∈ A],

where the graphs sampled from G(n, p) and G(n, γp) are independent on the right hand side. This is because
each edge is added independently with probability p+(1−p)γp ≤ (1+γ)p in the latter case. Then, combining
these observations with Markov’s inequality and Claim 3.17, we have

Pr[h(G(n, p)) > 1/2] = µp(A) + Pr
H∼G(n,p)

[h(H)− 1A(H) > 1/2]

< µp(A) + 2(E[h(G(n, p))]− E[1A(G(n, p))])
= 2E[h(G(n, p))]− µp(A)

≤ 2µ(1+ε)p(A)− µp(A)

≤ 2C · ε+ µp(A).

Finally, combining our two bounds from Markov’s inequality, we get

Pr[g(G(n, p)) ≥ ε and h(G(n, p)) ≤ 1/2] ≥ 1− 2C · ε− µp(A)−
1− µp(A)− δ

1− ε

≥ δ/2 ≥ ε,

for sufficiently small ε. Since ε need only depend on C and δ, this yields the desired result.

4 Introducing the Hypergraph Container Lemma
In this section we introduce the hypergraph container lemma, Theorem 4.3, a powerful tool which can be used,
among other applications, to show that the property of being Ramsey for a triangle has a sharp threshold.
The lemma, introduced in [BMS15, ST15], provides a unified framework for covering all independent sets in a
hypergraph with a lower order size collection of subsets. That is, it provides a small collection of “containers”
such that every independent set in the hypergraph belongs to some container. Moreover, each container is
itself almost independent; its induced subhypergraph includes few hyperedges. We make the descriptors
“lower order,” “small,” and “few” explicit in the statement of the lemma.

As an example of the power of the container lemma, we give a simple proof of a (tight) upper bound on
thresholds for the property of being Ramsey for a triangle. We first introduce some notation.

Definition 4.1. We say that G is r-Ramsey for a graph H if any r-coloring of the edges of G contains a
monochromatic copy of H. We denote this G→ (H)r.

In order to apply the container lemma, we need to connect the property of being r-Ramsey for a bounded
graph to the non-r-colorability of some hypergraph. We will consider the |H|-uniform family of hypergraphs
H where V (H) = E(Kn). The hyperedges correspond exactly to edge subgraph copies of H contained in
Kn. We next make the notion of hypergraph coloring precise.

Definition 4.2 (Hypergraph coloring). Let H be a hypergraph. A coloring of V (H) with r colors is a
function χ : V (H) → [r]. If no edge in E(H) is monochromatic, that is, for all e ∈ E(H), |χ(e)| ≥ 2, then χ
is a proper r-coloring of H. If H admits a proper r-coloring, we say H is (properly) r-colorable.
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This is akin to the definition of proper vertex colorings in the graph setting: a proper r-coloring of a graph
is exactly an r-coloring of the vertices such that every edge is not monochromatic (i.e., adjacent vertices are
colored different colors). Observe that, for S ⊆ E(Kn), H[S] is r-colorable if and only if S ̸→ (H)r. Namely,
an r-coloring of V (H[S]) corresponds exactly to an r-edge coloring of S and each color class in the r-coloring
of V (H[S]) being an independent set corresponds exactly to S not containing any monochromatic copies of
H.

The usual subset S that we consider will be a random graph G(n, p). We can now state the our main
result for this section.

Theorem 4.1 (Upper bound on r-Ramsey for a triangle threshold). For every fixed r ≥ 2, there exists
constants C and n0 such that, if p ≥ Cn−1/2, then G(n, p) → (H)r asymptotically almost surely.

A slightly weaker version of Theorem 4.1 was originally proved by Frankl and Rödl [FR86] for r = 2, and
the full statement of Theorem 4.1 was first shown in [RR94]. Our treatment here is based on [BMS18].

The high-level idea of the proof of Theorem 4.1 is as follows. First, we apply Ramsey’s theorem to say that
there is a constant such that any r-edge coloring of a complete graph of that size contains a monochromatic
copy of K3. We use this to prove a supersaturation result about the prevalence of monochromatic copies of
K3. Namely, we show that there are Ω(n3) monochromatic triangles in any r-coloring of Kn.

Next, we apply the hypergraph container lemma. Roughly speaking, the hypergraph container lemma
tells us that all of the independent sets of the 3-uniform hypergraph H with edges corresponding to triangles
are contained in a small collection of subhypergraphs (called containers). Each container has the additional
property of having few hyperedges. This near-independence property of the containers is crucial since it
allows us to exploit our supersaturation of monochromatic triangles to show that G(n, p) ̸→ (K3)r. Namely,
it allows us to show that G(n, p) being contained in the union of r containers is a relatively rare event.
Finally, using the fact that the total number of containers is small, we apply a union bound and deduce the
result.

First we prove our supersaturation lemma.

Lemma 4.2 (Supersaturation of monochromatic triangles). There exists some constant α > 0 such that any
r-coloring of Kn contains at least αn3 monochromatic triangles.

Proof. Fix an arbitrary r-coloring χ : E(Kn) → [r]. By Ramsey’s theorem, there exists a constant R such
that any r-coloring of the edges of KR contains a monochromatic triangle. Now, observe that there are Θ(nR)
copies of KR contained in Kn. By Ramsey’s theorem, χ induces a monochromatic triangle in each of them.
In total, up to double counting, this yields Θ(nR) monochromatic triangles. Moreover, each monochromatic
triangle is contained in at most Θ(nR−3) copies of KR. Hence, there are Ω(n3) monochromatic triangles in
Kn, as desired.

4.1 The Hypergraph Container Lemma
In order to formally state and apply the hypergraph container lemma, we need a new definition. For a
hypergraph H and some integer ℓ, let

∆ℓ(H) = max
A⊂V (H),
|A|=ℓ

|{e : e ∈ E(H), A ⊆ e}|.

For ℓ = 1, this is the maximum degree of the hypergraph. In general, ∆ℓ(H) is the maximum number of
edges containing a specific subset of vertices of size ℓ. We are now ready to state the theorem.

We will use a formulation of the hypergraph container lemma from [FKSS22]; this formulation is slightly
stronger than the original formulations in [BMS15, ST15].

Theorem 4.3 (Theorem 4.7 of [FKSS22]). For all ε,K > 0 and k ∈ N, there exists t ∈ N and δ > 0 such
that the following holds. Let H be a k-uniform (multi)hypergraph and τ > 0 such that

∆ℓ(H) ≤ Kτ ℓ−1 · e(H)

v(H)

for each ℓ ∈ [k]. Then, there exists a collection of subsets C of V (H) and a function f : P(V (H))t → C such
that:
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1. For every I ⊆ V (H) with e(H[I]) ≤ δτke(H), there are S1, . . . , St ⊆ I, each of size at most τv(H),
such that I ⊆ f(S1, . . . St).

2. For each S1, . . . , St ⊆ V (H), f(S1, . . . St) induces at most εe(H) hyperedges.

Before continuing, let us attempt to break down the various moving parts in Theorem 4.3. In applications,
the parameters ε,K, and k will often be fixed constants. Then, the resulting t and δ from Theorem 4.3 will
also be constants.

In order to apply Theorem 4.3, it is necessary to bound ∆ℓ(H) for all ℓ. The fraction e(H)
v(H) is on the

order of the average degree of H (for constant uniformity k), so the bound on ∆ℓ(H) is on the order of the
average degree of H scaled by τ ℓ−1. The smaller the τ these bounds hold for, the smaller the collection of
containers will be.

The function f , the fingerprint function, ensures that each independent set is contained in some container:
C is the collection of containers. Indeed, the first implication of Theorem 4.3, implies that if I ⊆ V (H) is
independent, then I ⊆ f(S1, . . . St) ∈ C. (In this stronger formulation of the container lemma we also have
that each set inducing a small number of edges is contained in some container, but we will not need this for
our example application.)

The fact that there are a small number of containers in C is a consequence of how an independent set
I ⊆ V (H) is mapped to a container. Indeed, its container membership is determined by f(S1, . . . St) for
S1, . . . , St ⊆ I such that each Si has at most τv(H) elements. As such, the number of containers covering
all I ⊆ V (H) with e(H[I]) ≤ δτke(H) can be naively bounded byτv(H)∑

i=0

(
v(H)

i

)t

≤
(
ev(H)

τv(H)

)tτv(H)

.

If τ = o(1) and ε,K, and k are constants (so that t and δ are constants), then this gives us

|C| = exp(o(v(H))),

since f(S1, . . . , St) with |Si| > τv(H) for some i ∈ [t] can be arbitrarily set to f(S′
1, . . . , S

′
t) for some S′

1, . . . , S
′
t

with |S′
i| ≤ τv(H) for all i ∈ [t]. This improves upon the trivial exp(O(v(H))) bound on the size of the

collection of containers.
The parameter ε controls the sparsity of our containers. This comes from the second implication of

Theorem 4.3, since each distinct f(S1, . . . St) can be assumed to be one of the containers via the discussion
above. Oftentimes it will be useful to set this sparsity parameter ε to conflict with a constant coming from
a supersaturation result. This is exactly what we will do in our application of the container lemma in this
section.

For our application in this section, we will be applying Theorem 4.3 to the 3-uniform hypergraph H
with V (H) = E(Kn) and the hyperedges corresponding to triangles in Kn. So, ∆1(H) = n − 2, ∆2(H) =
∆3(H) = 1, v(H) =

(
n
2

)
, and e(H) =

(
n
3

)
. Setting k = 3 and K = 6 and only considering τ = n−1/2 then

yields the following.

Corollary 4.4. Let H be the 3-uniform hypergraph with V (H) = E(Kn) and the hyperedges corresponding
to triangles in Kn. Then, for all constants ε > 0, there exist constant t ∈ N, C ⊂ P(V (H)), and a function
f : (P(V (H))t → C such that:

1. For every independent set I ⊂ V (H), there exist S1, . . . , St ⊆ I, each with at most n3/2 elements, such
that I ⊆ f(S1, . . . , St).

2. For each C ∈ C, e(H[C]) ≤ ε · n3.

4.2 An upper bound on thresholds for being Ramsey for a triangle
We are now ready to combine our supersaturation result (Lemma 4.2) and the hypergraph container lemma
(Corollary 4.4) to prove Theorem 4.1.
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Proof of Theorem 4.1. First fix r, the number of colors we will be considering. Now, let α be as in Lemma
4.2 with r + 1 colors and ε = α/(r + 1) in Corollary 4.4 (yielding f, C, and t, with H the hypergraph).

Let p = Ω(n−1/2) and let R ⊂ Kn be a random graph generated by G(n, p). Suppose that R is not r-
Ramsey for a triangle. That is, there is a coloring of the edges of R with r colors admitting no monochromatic
triangles. Hence, R ⊂ C1 ∪C2 · · · ∪Cr for some C1, C2, . . . , Cr ∈ C. We can extend the r-edge coloring of R
to an (r+1)-edge coloring of Kn by coloring Kn \R all the (r+1)th color. Then, by Lemma 4.2, Kn \R must
contain at least αn3

(r+1) triangles. This is because each Ci contains at most εn3 monochromatic triangles, and
Kn contains at least αn3 monochromatic triangles overall. Hence, since each edge is in at most n triangles,
Kn \R must contain at least αn2

(r+1) = εn2 edges. This is the rare event we were looking for!
Now, let S be a collection of t-tuples of sets of size at most n3/2 such that, for each S = (S1, . . . , St) ∈ S,

f(S) ∈ C is unique. For (S1, . . . ,Sr) ∈ Sr, let A(S1,...Sr) be the event that
r⋃
i=1

⋃
S∈Si

S ⊆ G(n, p)

and

G(n, p) \

(
r⋃
i=1

t⋃
S∈Si

S

)
⊆

r⋃
i=1

f(Si) \

(
r⋃
i=1

⋃
S∈Si

S

)
.

That is, A(S1,...Sr) is the event that the Si’s in (S1, . . .Sr) can determine the containers for an r-edge coloring
of G(n, p) without monochromatic triangles. Note that the two subevents making up A(S1,...Sr) are actually
independent. Then, by definition of A(S1,...Sr) and our independence observation,

Pr[G(n, p) ̸→ (K3)r] ≤ Pr
[
A(S1,...Sr) for (S1, . . . ,Sr) ∈ Sr

]
≤

∑
s≤rtn3/2

(
n2/2

s

)
ps · (1− p)εn

2

≤
∑

s≤rtn3/2

(
en2p

2s

)s
exp(−εpn2),

In the second step we use our rare event to bound the probability of the second part of A(S1,...Sr). In the
last step we use (1− x) ≤ e−x for all x ∈ R and

(
n
r

)
≤ (en/r)r. So, for p ≥ Cn−1/2 for sufficiently large C,

we can then bound this sum by exp(−εpn2/2), yielding the desired result.

5 Properties of the Hypergraph of Triangles in Kn

Before moving onto the proof that being 2-Ramsey for a triangle has a sharp threshold, we take a closer look
at the hypergraph considered in the last section. We observe five useful properties, (A1)–(A5).

Concretely, let H be the 3-uniform hypergraph with V (H) = E(Kn) and hyperedges corresponding to all
triangles in Kn, as seen in Section 4. Let pH = n−1/2. Denote the random sub-hypergraph of H obtained
by keeping each vertex independently with probability p by Hp (this is equivalently H[G(n, p)]). The first
property we will make use of is the fact that H is vertex transitive.

(A1) Symmetry. The group of automorphisms Aut(H) acts transitively on V (H).

This is immediate: the permutation swapping vertices u and v and fixing the remaining vertices is an
automorphism, for example.

The next property is that we can apply the hypergraph container lemma (Theorem 4.3) to H.

(A2) Non-clusteredness. For all ℓ ∈ [3], ∆ℓ(H) = O(pℓ−1
H · e(H)

v(H) ).

We already checked this property in Section 4. A crucial property, and the only one whose proof will not
be self-contained in this exposition, is that pH is a threshold probability for the property of being 2-Ramsey
for a triangle. We proved that pH is an upper bound of the threshold probability in Section 4 as a sample
application of the hypergraph container lemma. For the proof of the lower bound, we refer the reader to
[FR86, LRV92].
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(A3) Weak threshold. pH = n−1/2 is a threshold probability for G(n, p) → (K3)2.

The next property is an important necessary property for proving that G(n, p) → (K3)2.

(A4) Colorability of typical bounded-size subsets. For all K > 0, for all S ⊂ HpH with |S| ≤ K, H[S] is
2-colorable, asymptotically almost surely.

That is, typical bounded-size subgraphs of G(n, pH) cannot be 2-Ramsey for a triangle. Note that Lemma
3.1 implies that, if there exists K > 0 such that the probability of containing a subgraph H ⊆ G(n, pH) with
|H| ≤ K with H → (K3)2 is bounded below by some constant, then the property of G(n, p) → (K3)2 in fact
has a coarse threshold. This uses property (A3).

Proposition 5.1. Property (A4) holds.

We begin with a helpful claim bounding the degree of typical bounded size subgraphs of G(n, pH).

Claim 5.2. For all constants K > 0, asymptotically almost surely (a.a.s.), for all subgraphs H ⊆ G(n, pH)
with |H| ≤ K, e(H)/v(H) ≤ 4.

Proof. Let k ≤ K, and let S ⊆ [n] with |S| = k. Observe that

Pr[|G(n, pH)[S]| > 2k] = O(n−k−1/2),

since pH = n−1/2. Then, union bounding over all
(
n
k

)
subsets of size k in [n], we get that

Pr[∃S ⊆ [n], |S| = k s.t. |G(n, pH)[S]| > 2k] = O(n−1/2).

Finally, union bounding over all 1 ≤ k ≤ K, we get that

Pr[∃S ⊆ [n], |S| ≤ K s.t. |G(n, pH)[S]| > 2|S|] = O(n−1/2),

yielding the desired result.

Proof of Proposition 5.1. Fix K > 0. Let GpH ∼ G(n, pH). Let S ⊆ GpH with |S| ≤ K. Denote GpH [S]
by H and suppose for the sake of contradiction that H → (K3)2, and there is some v ∈ V (H) such that
H \ v ̸→ (K3)2. If the former condition holds but the latter does not, we can restrict to a smaller subgraph
S to make the latter hold. A.a.s., by Claim 5.2, the average degree of H is at most 4. Then, either H has
minimum degree less than 4 or H is 4-regular.

By assumption, any extension of a 2-edge coloring of H \ v without monochromatic triangles to H
introduces a monochromatic triangle including v. Consider H[N(v)] (where N(v) denotes the neighborhood
of v). Suppose that the edges of H[N(v)] can be oriented so that each vertex has outdegree ≤ 1. Then, we
can extend any 2-edge coloring of H \ v without monochromatic triangles to H as follows. For u ∈ N(v),
color edge (v, u) the same color as the outgoing edge from u in the orientation of the edges of H[N(v)]
if such an outgoing edge exists. Otherwise color edge (v, u) arbitrarily. Now, any triangle (v, u1, u2) with
u1, u2 ∈ N(v) includes the outgoing edge from either u1 or u2 (as it includes the edge (u1, u2)) and hence,
since it also includes both edges (v, u1) and (v, u2), cannot be monochromatic. See Figure 3.

Now, if e(H[N(v)]) ≤ 4, then we can orient the edges of H[N(v)] so that each vertex has at most one
outgoing edge. For each node of degree 1, orient its incident edge to be outgoing from it. Then, all the
unoriented edges form a cycle, and directing the edges in one direction about the cycle yields the desired
orientation. Thus, we can assume that for each v ∈ V (H), e(H[N(v)]) ≥ 5. Concretely, if there is v ∈ V (H)
with e(H[N(v)]) ≤ 4, since H → (K3)2, we must have H \ v → (K3)2 by the above.

This implies that H is 4-regular. In fact, we also get that, for each v ∈ V (H), e(H[N(v)]) = 6. Indeed,
suppose there were v ∈ V (H) with e(H[N(v)]) = 5 with neighbors u1, u2, u3, and u4 and (u3, u4) ̸∈ H. Then,
let w be the one unaccounted for neighbor of u3. It cannot be adjacent to any of v, u1, or u2 since all four of
their neighbors are accounted for. These are the other three neighbors of u3, and, hence, e(H[N(u3)]) = 3,
a contradiction. See Figure 5.

Finally, H being 4-regular with e(H[N(v)]) = 6 for all v ∈ V (H) implies that H = K5. But K5 admits a
2-coloring without any monochromatic triangles: e.g., decompose K5 as the union of two 5-cycles and color
one 5-cycle red and the other blue. This yields the desired contradiction.

20



v
H[N(v)]

H \ {N [v]}

Figure 3: Transferring edge-orientations of H[N(v)] to extensions of edge-colorings of H \ v.

v
H[N(v)]

u1

u2

u3

u4

w

H[N(u3)]

Figure 4: Diagram showing that, for each v ∈ V (H), e(H[N(v)]) = 6.
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The fifth and final property we require is a supersaturation result for an application of the hypergraph
container lemma on a hypergraph related to H. At a high-level, it will allow us to argue that relevant partial
proper colorings of H have a large number of edge violations in any extension of the coloring to the full
hypergraph.

To make this concrete, we begin with a definition.

Definition 5.1 (Forced triangle). Let φ be a partial coloring of H. Then, the 4-tuple of hyperedges
(T, T1, T2, T3) forms a forced triangle centered at T if there are two vertices in each of T1, T2, and T3 such
that φ colors them all the same color and T is composed of the other three vertices in T1, T2, and T3.

Definition 5.1 is called a forced triangle because if the partial coloring is a partial proper coloring, then
any extension of the coloring to include the union of the vertices in the forced triangle includes a violating
hyperedge (which amounts to a monochromatic triangle when interpreted as a graph). See Figure 5.

T

T1 T2

T3

Figure 5: Red forced triangle (T, T1, T2, T3) and its corresponding graphical representation.

(A5) Partial coloring supersaturation. Any partial coloring of H coloring at least two out of three vertices
of Ω(n3) hyperedges the same color induces Ω(n6) forced triangles.

Proposition 5.3. Property (A5) holds.

Proof. Let φ be a partial coloring of H coloring at least two out of three vertices of Ω(n3) hyperedges the
same color. Assume without loss of generality that φ colors two out of three vertices of Ω(n3) hyperedges
red, and restrict φ to only consider its red colorings (treat all vertices colored blue as uncolored). It will be
more convenient to view φ as a partial coloring of the edges of Kn. As usual, the vertices in H correspond
to edges in Kn, and the hyperedges in E(H) correspond to triangles in Kn.

Now, since each e ∈ E(Kn) belongs to at most n− 2 triangles, there exists Ω(n2) total e ∈ E(Kn) such
that e is the third edge in Ω(n) triangles with the other two edges colored red. Let S ⊂ E(Kn) be the set
of all such edges.

In particular, fix (u, v) ∈ S. Let X(u,v) be the set of non-u, non-v vertices in each of the Ω(n) triangles
including (u, v) with other two edges colored red. Every triangle of vertices X(u,v) is formed by three edges
forming the third edges of a triple of triangles with other two edges colored red. Namely, every triangle of
vertices in X(u,v) corresponds to a forced triangle (and the three triangles with two edges colored red each
have two vertices in X(u,v) and the vertex between the red edges either u or v). See Figure 5. Since all the
forced triangles formed this way are distinct when varying (u, v) over S, this yields Ω(n6) distinct forced
triangles.

Remark 5.1. In [FKSS22], they prove that the conjunction of more general versions of properties (A1)–(A5)
is sufficient for showing sharp thresholds for a much broader class of Ramsey properties on hypergraphs. In
their more general setting, establishing (A4) and (A5) requires considerably more work.
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u v

· · ·
X(u,v)

Figure 6: Structure of X(u,v) for some (u, v) ∈ S

6 The Threshold for Being Ramsey for a Triangle is Sharp
The focus of the rest of this exposition is the unifying method of proving sharpness of thresholds for Ramsey
properties from [FKSS22]. We will focus our attention on proving that the property of being 2-Ramsey for
a triangle has a sharp threshold, using properties (A1)–(A5) from Section 5. More rigorously, we have the
following.

Theorem 6.1 (The Threshold for Being Ramsey for a Triangle is Sharp). Let A be the property G→ (K3)2.
Then, there exists a sequence p = p(n) with p = Θ(n−1/2) such that, for all ε > 0,

Pr[G(n, p(1− ε)) ∈ A] = o(1)

and
Pr[G(n, p(1 + ε)) ∈ A] = 1− o(1).

Throughout the proof, we will make heavy use of the hypergraph container lemma, Theorem 4.3, intro-
duced in Section 4. As such, it will be convenient to adopt the hypergraph view of these coloring properties
as in Section 4 and 5. That is, let H be the 3-uniform hypergraph with V (H) = E(Kn) and hyperedges
corresponding to all triangles in Kn, and let pH = n−1/2, as in Section 5. Let S ⊆ E(Kn). A proper
2-coloring of H[S] is precisely a 2-coloring of the edges S in E(Kn) without any monochromatic triangles.

Our goal will be to derive a contradiction with the dichotomy version of Friedgut’s criterion, Theorem
3.16. In particular, we start by assuming for the sake of contradiction that the property of G→ (K3)2 has a
coarse threshold. Then, Theorem 3.16 applies. Whenever we use p for the remainder of this section, we refer
to p from the infinite sequence admitted by Theorem 3.16. For simplicity, we can assume that p ≤ KpH for
the same K bounding the booster size in the first implication of the theorem. Using the first implication
of Theorem 3.16, we can enforce that the booster we find is suitably nice (by including low probability,
problematic boosters in the family F). Then, given an appropriate choice of F , the first implication will
yield a (p, δ)-booster B0. Our family of boosters B for the second implication will then be the family of
isomorphic copies of B0 in Kn (and, by the symmetry of the property G→ (K3)2, these are all (p, δ)-boosters
themselves). It will be helpful to view the family of sets B as a |B0|-uniform hypergraph (also on vertex set
E(Kn) = V (H)).

Since the second implication holds with probability at least ε, we can also disregard low probability “bad”
random graphs S ∼ G(n, p) to focus instead on suitably nice S. Our starting point will be the family S of
S ⊆ E(Kn) for which the second implication holds, and we will gradually refine S.

What properties of B0 and S are useful to us? Our hope is to eventually show that the dichotomy
offered by the second implication of Theorem 3.16 cannot hold. We choose properties of B0 and S so
that having at least a constant fraction of B being active boosters, i.e., S ∪ B ∈ A for B ∈ B, implies
Pr[S ∪G(n, εp) ∈ A] = 1− o(1), contradicting (a) of the second implication of Theorem 3.16. Roughly, this
will come from showing that, for any proper 2-coloring ψ of H[S], any extension of this coloring to all of V (H)
induces Ω(e(H)) many monochromatic edges. Then we can leverage Janson’s inequality, Theorem 2.1, to
show that, for any choice of coloring ψ, S∪G(n, εp) very likely includes one of these edges. Finally, applying
a careful union bound—coming from considering partial proper colorings and the hypergraph container
lemma—we will be able to conclude the result.
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6.1 Applying the Friedgut Coarse Threshold Criterion
A few observations are in order. We begin by interpreting the second implication of Theorem 3.16 when
applied to the property of being 2-Ramsey for a triangle.

Observation 6.2. We may assume that both H[S] and H[B0] are 2-colorable.

When S ∈ S, H[S] is 2-colorable since, by (a) of the dichotomy,

Pr[S ∪G(n, εp) ̸→ (K3)2] ≥ 1/2 > 0.

We can ensure that H[B0] is 2-colorable by choosing the constant bound in (A4) larger than the K from
Theorem 3.16 (and adding the family of o(1) total probability problematic graphs to F). This is actually
the only property we will enforce for B0.

We now introduce several definitions. For each S ∈ S, for at least an ε fraction of B ∈ B, S∪B → (K3)2.
We refer to this subset of B as BS . This is precisely the subset of activated boosters for S. That is,

BS := {B ∈ B : H[S ∪B] is not 2-colorable}.

Since both H[S] and H[B] are each individually 2-colorable by Observation 6.2, the only limiting factor for
2-colorability of H[S ∪B] is the the set of edges in H[S ∪B] intersecting both S and B. Call each such edge
an interacting edge. Indeed, given any pair of proper 2-colorings ψ and φ for S and B ∈ BS , respectively,
there will be a monochromatic interacting edge (and all monochromatic edges in the coloring ψ ∪ φ will be
interacting edges). More generally, if ψ is instead a partial proper 2-coloring of H[S] (i.e., not all elements
of S are assigned colors), and φ is still a proper 2-coloring of H[B], then ψ ∪φ is a proper partial 2-coloring
of H[S ∪ B] if and only if no interacting edges are monochromatic. It will be essential to consider partial
colorings later.

This motivates the notion of the interface between S and B ∈ B. Namely, we define

I(S,B) := {A \B : A ∈ E(H) interacting between S and B}.

Note that we restrict our definition of the interface to the subsets of the interacting edges in S. The idea is
that I(S,B) contains all the necessary information to determine whether a partial proper 2-coloring ψ of S
and proper 2-coloring φ of B are consistent. That is, the colorings agree on any vertices colored by both,
and no new monochromatic edges are induced by combining the colorings. It will be crucial to carefully
control the structure of I(S,B).

6.1.1 Controlling the interfaces

We can control the structure of I(S,B) for B ∈ BS by restricting S. Indeed, let B′
S be BS after only retaining

active boosters with all of the following additional properties:

(B1) B and S are disjoint.

(B2) Each set in I(S,B) has cardinality exactly 2.

(B3) The sets in I(S,B) are disjoint.

(B4) The collection I(S,B) contains at most L sets, for L some constant depending only on ε and K.

The constant L is defined implicitly so that KL

L! ≤ ε2/8. Define our first restriction of S as follows:

S ′ := {S ∈ S : |B′
S | ≥ εe(B)/2}.

The following lemma shows that, for a typical S, few active boosters fail one of (B1)–(B4).

Lemma 6.3. If S ∼ G(n, p), then the expected number of B ∈ B failing any of (B1)–(B4) is at most
ε2e(B)/4.
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Now, by Lemma 6.3 and Markov’s inequality, for S ∼ G(n, p),

Pr[|BS \ B′
S | ≥ εe(B)/2] ≤ 2ε2e(B)

4εe(B)
= ε/2.

Hence, since for S ∈ S, |BS | ≥ εe(B) and, by definition of S, Pr[S ∈ S ′] ≥ ε/2. (Recall that S was defined
as S ∼ G(n, p) satisfying the second implication of Theorem 3.16 with total probability at least ε.)

Proof of Lemma 6.3. Let X1, X2, X3, and X4 be the number of B ∈ B failing conditions (B1), (B2), (B3),
and (B4), respectively. First,

E[X1] =
∑
B∈B

Pr[B ∩ S ̸= ∅]

≤
∑
B∈B

E[|B ∩ S|]

=
∑

v∈V (B)

p · degB(v)

= Θ(e(B)) ·Θ(n−1/2) = o(e(B)),

using that B has constant uniformity. Next, assuming that (B1) holds, the only bad case for (B2) is when
the sets in I(S,B) have size 1. So,

E[X2 −X1] ≤
∑
B∈B

(
|B|
2

)
· p ≤ e(B) ·

(
K

2

)
·Θ(n−1/2) = o(e(B)).

That is, for each booster B ∈ B, for it to induce a set in I(S,B) of size 1, there must be an interacting
hyperedge between S and B intersecting B on 2 elements and intersecting S on 1 element. But, for any
two elements of B, there is a single hyperedge in H containing them both, and the third vertex is in S with
probability p.

Now, assuming that (B1) and (B2) hold, the only bad case for (B3) is when there exist hyperedges A,A′

interacting between S and B with |A ∩ S| = |A′ ∩ S| = 2 and |A ∩ A′ ∩ S| = 1. For a given B ∈ B, we can
choose a vertex in B in |B| ways, a hyperedge of H involving that vertex in ∆1(H) ways, the vertex for the
interacting edges to overlap in S on in 2 ways, and the other vertex in B of the other interacting edge in
|B| − 1 ways. So,

E[X3 −X2 −X1] ≤
∑
B∈B

|B| ·∆1(H) · 2 · (|B| − 1) · p3 = O(n3/2) = o(e(B)).

Finally, assuming that (B1), (B2), and (B3) hold, we bound |I(S,B)|. In order for |I(S,B)| ≥ ℓ for some
ℓ ∈ N, there must be A1, . . . , Aℓ ∈ E(H) interacting between S and B. There are at most (|B|·∆1(H))ℓ

ℓ! such
sequences up to permutation, and, by our assumed properties, the union of each such sequence intersects S
on exactly 2ℓ elements. So,

Pr[|I(S,B)| ≥ ℓ] ≤ p2ℓ(|B| ·∆1(H))ℓ

ℓ!
≤ Kℓ

ℓ!
.

Now, letting ℓ = L as in (B4), we have that Pr[|I(S,B)| ≥ L] ≤ ε2/8. Then,

E[X4 −X3 −X2 −X1] ≤
∑
B∈B

Pr[|I(S,B)| ≥ L] ≤ ε2e(B)/8.

Combining all of our bounds, we get

E[X1 +X2 +X3 +X4] ≤ ε2e(B)/8 + o(e(B)) ≤ ε2e(B)/4,

as desired.
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6.2 Partitioning the colorings of S

Now we focus our attention on S ∈ S ′. Consider a proper 2-coloring of H[S], ψ. Since for all B ∈ B′
S we

know H[S ∪B] is not properly 2-colorable, for any choice of a proper 2-coloring of H[B], φ, φ ∪ ψ admits a
monochromatic edge in H[S ∪B].

But, none of this uses any of the properties (B1)–(B4)! For v ∈ V (H), say that v is forced by the partial
coloring ψ of H if v belongs to a hyperedge in H with both other vertices colored the same color by ψ. Let
F (ψ) ⊆ V (H) be the set of all vertices forced by ψ. One major consequence of properties (B1)–(B4) is that
we can show results of the following kind.

Proposition 6.4. For any S ∈ S ′ and any proper 2-coloring ψ of H[S], |F (ψ)| = Ω(v(H)).

Proof. Let S ∈ S ′ and ψ be a proper 2-coloring of H[S]. For each B ∈ B′
S , |F (ψ) ∩ B| ≥ 1. Indeed, if this

were not the case, then, by (B1), (B2), and (B3), for each A\B ∈ I(S,B), ψ colors the two vertices in A\B
two different colors. So, namely, in any extension of ψ to a coloring also coloring B, the activated edges will
not be monochromatic. But then, since H[B] is properly 2-colorable, for any proper 2-coloring φ of H[B],
φ ∪ ψ is a proper 2-coloring of H[S ∪B], contradicting the fact that B is an activated booster.

Then, since each v ∈ H belongs to at most e(B)/v(H) boosters (by symmetry of B), we get

|F (ψ)| ≥ |B′
S |v(H)/e(B) ≥ εv(H)/2 = Ω(v(H)),

as desired.

In Section 6.3, we will apply the hypergraph container lemma and the partial coloring supersaturation
property (A5) to show that, in fact, any extension of a proper 2-coloring ψ of H[S] for S ∈ S ′ to a 2-coloring
of all of H contains Ω(e(H)) monochromatic edges (Theorem 6.12). This is almost enough to conclude
Theorem 6.1, except that we will need to apply a union bound over too many different 2-colorings of S. To
preempt this issue, we will apply the hypergraph container lemma to partition the set of proper 2-colorings
of S into a lower order size collection, setting up the application of the container lemma carefully so as to
still be able to ultimately conclude something akin to Proposition 6.4.

6.2.1 The color forcing hypergraph

Given S ∈ S ′, our goal is to define a hypergraph T such that, for any partial 2-coloring of S, if it consistent
with a proper 2-coloring of some B ∈ B′

S , then there is some hyperedge in E(T ) demonstrating this fact.
In this way, we will be able to relate independent sets of T to proper 2-colorings of S and make use of the
hypergraph container lemma.

Note that a partial coloring ψ of S can be viewed as a subset of S × [2]: for each s ∈ S colored by ψ,
include the pair (s, ψ(S)). For each s ∈ S not colored by ψ, include both the pairs (s, 1) and (s, 2). We will
use this set-based view of colorings in defining T .

Definition 6.1 (The color forcing hypergraph). We let T be the (multi)hypergraph with vertex set S × [2]
with (multi)set of edges defined as follows. For each active booster B ∈ B′

S and proper 2-coloring φ of B,
we add to T all hyperedges corresponding to (not necessarily proper) 2-colorings of ∪A\B∈I(S,B)A \ B ⊆ S
consistent with φ.

Let B ∈ B′
S . As a result of our efforts in defining B′

S , we can say a substantial amount about what
2-colorings of ∪A\B∈I(S,B)A \B consistent with φ look like. Let T = A \B ∈ I(S,B) and define

NH(T,B) := {b ∈ B : T ∪ {b} ∈ E(H)}.

Namely, these are the vertices of B that are part of interacting edges between S and B, intersecting S on T .
Now, we know that | ∪A\B∈I(S,B) A \ B| ≤ 2L, by (B4). Additionally, using (B1), (B2), and (B3), for

each {t1, t2} = T ∈ I(S,B), either t1 and t2 are colored different colors or, if they are colored the same color,
then each element of NH(T,B) is colored the opposite color under φ.

Formalizing the discussion above, the following is a simple but important consequence of Definition 6.1.

Lemma 6.5. Let ψ be a proper 2-coloring of H[S]. Then, when viewed as a subset of S× [2], ψ corresponds
to an independent set in T .
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Proof. Suppose that T [ψ] contains some edge T . Then, by Definition 6.1, there exists some B ∈ B′
S and

proper 2-coloring φ of H[B] such that T encodes a proper 2-coloring ψφ of ∪A\B∈I(S,B)A\B consistent with
φ. But, T ⊂ T [ψ] implies that ψφ and ψ in fact agree on ∪A\B∈I(S,B)A \ B. This implies that ψ ∪ φ is a
proper 2-coloring of H[S ∪B], contradicting the fact that B is an activated booster.

By design, we also have a nice analogue of Proposition 6.4 in the setting of our color forcing hypergraph
T . Namely, subhypergraphs of T corresponding to partial colorings which force few vertices must contain
many edges. This is extremely convenient for applications of the hypergraph container lemma (where we
will be able to easily restrict the number of edges inside our containers).

Lemma 6.6. If ψ is a partial 2-coloring of S, then

e(T [ψ]) ≥ e(B′
S)− |F (ψ)| ·∆1(B).

Proof. Let B ∈ B′
S such that B ∩ F (ψ) = ∅. It suffices to show that B induces some edge in T [ψ].

For each T ∈ I(S,B), ψ does not color both nodes in T the same color (or else the third vertex of any
activated edge A between S and B including T would be forced). Hence, there is a coloring of ∪T∈I(S,B)T
which extends ψ and, for each T ∈ I(S,B) colors the two vertices in T different colors (this crucially uses
properties (B1), and (B2), (B3)). Then, that coloring is in fact consistent with every proper 2-coloring φ of
B (and, in particular, some coloring φ) and thus corresponds to an edge in T [ψ].

Remark 6.1. For the count in Lemma 6.6 to be accurate, it is crucial that T is defined as a multihyper-
graph. This is precisely why we need the hypergraph container lemma phrased more generally in terms of
multihypergraphs (Theorem 4.3).

6.2.2 Applying the container lemma to the color forcing hypergraph

Our next goal will be to show that all proper 2-colorings of S are extensions of a relatively small family of
partial 2-colorings of S. To do this, we want to apply the hypergraph container lemma to T . There are two
major obstacles to doing this. First, we would need to show that T satisfies the degree bound hypotheses in
the container lemma (Theorem 4.3). Rather than showing this for T , it will be enough for us to apply the
container lemma to a subhypergraph T ′ ⊆ T . In any case, to get the necessary degree bounds, we will need
to further restrict S ′. It will suffice to show that there is a relatively dense subhypergraph T ′ ⊆ T satisfying

∆1(T ′) = O

(
e(T ′)

|S|

)
and

∆2(T ′) = o

(
e(T ′)

|S|

)
.

We will use the bound on the ∆2(T ′) to derive bounds on ∆ℓ(T ′) for ℓ ∈ [2L] such that ℓ ≥ 3. (Observe
that we are exploiting (B4) to have an upper bound on the size of edges in T ′.)

Note that O(e(T ′)/|S|) is of the order of the average degree of T ′. Hence, our goal is merely to remove any
dramatic disparities between the maximum and average degrees. It turns out that this is easily achievable
by repeatedly removing edges from sets of nodes of maximum degree. We can bound the effect of this greedy
algorithm using the sum of the squares of degrees.

Proposition 6.7. Let G be a (multi)hypergraph. For all t,m ∈ N, there is G′ ⊆ G with e(G′) ≥ e(G) −m
and ∑

T∈(V (G)
t )

degG(T )
2 ≥ m ·∆t(G′).

Proof. Assume m ≤ e(G) or else the result is trivial. Fix t ∈ N. We obtain G′ by removing edges from
T ∈

(
V (G)
t

)
with maximum degree. Think of ∑

T∈(V (G)
t )

degG(T )
2
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as each T ∈
(
V (G)
t

)
contributing its degree, degG(T ), to each of the degG(T ) hyperedges it belongs to. Then,

whenever we remove an edge, it removes a contribution of at least ∆t(G′) from this sum (since otherwise we
should have removed a different edge). This yields the desired result.

The following technical lemma allows us to take advantage of Proposition 6.7. In the lemma, p is drawn
from the same sequence of probabilities we have been using.

Lemma 6.8 (Lemmas 5.7 and 5.8 of [FKSS22]). If S ∼ G(n, p), then:

E

 ∑
v∈V (T )

degT (v)
2

 ≤ C · e(B)2

p · v(H)
, (1)

and

E

 ∑
T∈(V (T )

2 )

degT (T )
2

 ≤ σ · e(B)2

p · v(H)
(2)

where σ = o(1) and C a constant depending on K and L.

We suppress the proof of Lemma 6.8. Now, by Markov’s inequality, these expectation bounds will give
us the desired degree bounds on T . Indeed, let τ = σ1/(2L+1), where σ is the parameter in (2). We restrict
S ′ to S ′′ by only retaining the S ∈ S ′ such that both the following conditions hold:∑

v∈V (T )

degT (v)
2 ≤ 16ε−1Ce(B)2

|S|
,

and ∑
T∈(V (T )

2 )

degT (T )
2 ≤ τ2Le(B)2

|S|
.

By the Chernoff bound and Markov’s inequality,

Pr(S ∈ S ′′) ≥ Pr[S ∈ S ′]− Pr[|S| ≥ 2pv(H)]− ε/8− 2τ ≥ ε/4,

for large enough n. With our final restriction to S made, we are finally ready to apply the container lemma.

Lemma 6.9. Let S ∈ S ′′. Then, there exists a family C of partial colorings of S such that:

1. All proper 2-colorings ψ of S are extensions of some coloring in C.

2. The family C satisfies |C| = exp(o(|S|)).

3. Every partial coloring ψ in C forces Ω(v(H)) vertices.

Note that the trivial bound on the size of such a family C is 2|S|, so we are exploiting the interdependency
of the proper 2-colorings in some nontrivial way.

Proof of Lemma 6.9. Fix S ∈ S ′′. By applying Proposition 6.7 twice to T with m = ε · e(B)/16 and t = 1
and then t = 2, we get T ′ ⊆ T with e(T ′) ≥ e(T )− ε · e(B)/8 such that

∆1(T ′) ≤ 28ε−2C · e(B)
|S|

and

∆2(T ′) ≤ 16ε−1 · τ2L · e(B)
|S|

.

Note that then
e(T ′) ≤ 2|S| ·∆1(T ′) ≤ 29ε−2C · e(B),
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since there are 2|S| vertices in T ′.
An issue emerges. The container lemma as phrased in Theorem 4.3 only applies to uniform (multi)hypergraphs,

but T ′ has hyperedges of varying even sizes between 2 and 2L. Fortunately, there is an easy fix. Partition
T ′ into L distinct u-uniform subhypergraphs, Tu for u ∈ [2L] even. This covers all of the hyperedges in T ′

by (B2), (B3), and (B4). Each independent set in T is also an independent set in T ′ and Tu for each u.
When we apply the hypergraph container lemma to one of the hypergraphs Tu, the resulting collection of
containers corresponds exactly to a set of partial 2-colorings of S such that every proper 2-coloring of S is
an extension of one of the partial 2-colorings.

While we could apply the container lemma to any single Tu to get the first two implications of Lemma
6.9, we need to tread carefully to simultaneously achieve the third implication. We want to make use of
Lemma 6.6, so we need to control the number of edges our containers induce in T ′. We will achieve this by
intersecting the containers resultant from applying the container lemma to each distinct Tu.

We now make this concrete. We apply the container lemma to each of subhypergraphs with sufficiently
many edges. Namely, define

U = {u ∈ [2L] : ε · e(B)/(16L) < e(Tu)}.

Observe that e(T ) ≥ εe(B)/4 since each S ∈ S ′′ has at least that many activated boosters. Hence we also
have e(T ′) ≥ εe(B)/8. Now, fix u ∈ U . We check that it satisfies the hypotheses of the container lemma.
First,

∆1(Tu) ≤ ∆1(T ′) ≤ 28ε−2C · e(B)
|S|

≤ 213ε−3CL · e(Tu)
v(Tu)

.

Also, for ℓ ∈ [2, 2L],

∆ℓ(Tu) ≤ ∆2(Tu) ≤ ∆2(T ′) ≤ 25ε−1τ ℓ−1e(B)
v(Tu)

≤ 29ε−2Lτ ℓ−1e(Tu)
v(Tu)

.

So, choosing appropriate constant parameters εT ,KT in Theorem 4.3 (depending only on ε, L,C), we get a
collection Cu of partial colorings (the image of f : P(V (T ))t → P(V (T )) applied to all t-tuples of at most
τv(T )-element subsets) such that:

1. For each proper 2-coloring ψ of S, there exists C ∈ Cu so that ψ ⊆ C. (That is, ψ is a extension of the
partial coloring of S corresponding to C.)

2. For each C ∈ Cu, e(Tu[C]) ≤ εe(B)/(16L).

3. |Cu| ≤
(
ev(Tu)
τv(Tu)

)τv(Tu)
= exp(o(|S|)).

Finally, let C be the collection of |U |-wise intersections of containers, one from each Cu, u ∈ U . (U is
nonempty by construction by the pigeonhole principle.) Since |U | ≤ 2L and L is constant, |C| = exp(o(|S|)).
Each proper 2-coloring ψ of S is contained in some container in Cu for each u ∈ U , and, hence, is contained
in some container in C.

The last thing to check is that C achieves the third implication of the lemma. By the container lemma
and definition of U , each ψ ∈ C induces at most 2L · εe(B)/16L = e(B)/8 edges in T ′ and then at most
εe(B)/8 + εe(B)/8 = εe(B)/4 edges in T . Then, by Lemma 6.6, since |B′

S | ≥ εe(B)/2,

|F (ψ)| ≥ εe(B)
4∆1(B)

= Ω(v(H)),

by symmetry of B.

6.3 Turning forced vertices into monochromatic edges
The goal of this section is to apply our partial coloring supersaturation property (A5) to show that, for
any ψ ∈ C resultant from Lemma 6.9, not only does ψ force Ω(v(H)) vertices, but ψ also forces Ω(e(H))
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monochromatic hyperedges in any extension to a 2-coloring of all of H. As a reminder, we refer to the
structures which induce monochromatic hyperedges as forced triangles, see Definition 5.1.

To do this, we require an intermediate theorem and a technical lemma. The theorem uses the container
lemma to transfer (A5) to the sparse setting (and to be able to apply the container lemma, the proof relies
crucially on (A2)).

Theorem 6.10. Let S ∼ G(n, p). With probability 1− o(1), for every partial 2-coloring ψ of S such that ψ
colors two out of three vertices of Ω(v(H)) hyperedges the same color, ψ induces Ω(e(H)) forced triangles.

The next step is to say the Ω(e(H)) forced triangles actually amount to Ω(e(H)) monochromatic edges
in any extension of the partial 2-coloring to a 2-coloring of H. For T ∈ E(H) and S ⊆ V (H) let f(T, S)
be the number of 4-tuples of hyperedges (T, T1, T2, T3) such that T1, T2, T3 ∈ E(H[S]) and T intersects each
of T1, T2, and T3 on one vertex and, and |T ∪ T1 ∪ T2 ∪ T3| = 9. Namely, each such 4-tuple is a minimally
intersecting configuration of hyperedges in S which could, when colored, yield a forced triangle centered at
T . For an example of this, see Figure 5. (In this example, the red vertices are those that could be colored
to yield a forced triangle.) We can upper bound the expectation of the sum of the squares of f(T, S) for any
given S ∼ G(n, p).

Lemma 6.11. Let S ∼ G(n, p). Then,

E

 ∑
T∈E(H)

f(T, S)2

 = O(e(H)).

Using Theorem 6.10, Lemma 6.11, and the Cauchy-Schwarz inequality we can then prove the main result
of this section.

Theorem 6.12 (Forced vertices to forced monochromatic edges). Let ε > 0 be a constant, and let S ∼
G(n, p). Then, with probability at least 1− ε, for every partial 2-coloring ψ of S, if |F (ψ)| = Ω(v(H)), then
ψ induces Ω(e(H)) distinct centers of forced triangles.

Proof. Let S ∼ G(n, p). By Lemma 6.11 and Markov’s inequality, there exists a constant C such that∑
T∈E(H)

f(T, S)2 ≤ Ce(H)

with probability at least 1− ε/2. Moreover, the implication of Theorem 6.10 holds with probability 1− ε/2
(for large enough n). So, with probability at least 1− ε, S has both of these properties.

Now, let ψ be a partial 2-coloring of such an S with |F (ψ)| = Ω(v(H)). Then, since the implication
of Theorem 6.10 holds, ψ induces Ω(e(H)) forced triangles. Let Hψ ⊆ H composed only of edges T with
f(T, S) ≥ 1. Observe that e(Hψ) is the number of distinct centers of forced triangles induced by ψ. Now,
by definition of Hψ, ∑

T∈Hψ

f(T, S) = Ω(e(H)).

But, by the Cauchy-Schwarz inequality, ∑
T∈Hψ

f(T, S)

2

≤ e(Hψ) ·
∑
T∈Hψ

f(T, S)2

≤ e(Hψ) · C · e(H),

with the last inequality using our assumption on S. Combining the above implies e(Hψ) = Ω(e(H)), as
desired.

Now we prove Lemma 6.11. The proof follows from a simple degree of freedom argument after expanding
the defintion of the expectation.
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Proof of Lemma 6.11. Fix T ∈ H. Define FT to be the collection of subsets of V (H) corresponding to the
union of supports of non-T vertices of possible forced triangles centered at T . That is, FT is the collection
of T1 ∪T2 ∪T3 \T for T1, T2, T3 ∈ E(H) such that (T, T1, T2, T3) contributes to f(T, S) (e.g., the red vertices
in Figure 5).

Then, expanding the definition of f(T, S) as a sum of indicator random variables, we have

E[f(T, S)2] =
∑

F,F ′∈FT

psupp(F )∪supp(F ′).

Each F, F ′ ∈ FT can overlap on 0, 1, 2, or all 3 of the outer hyperedges composing them. In each case, they
overlap on 0, 2, 4, and or all 6 vertices in their supports, respectively. There are O(n6), O(n5), O(n4), and
O(n3) instances of each type of pair respectively, yielding a total contribution of

O(n6 · p12 + n5 · p10 + n4 · p8 + n3 · p6) = O(1),

since p = Θ(pH) = Θ(n−1/2). This yields the desired result by linearity of expectation.

The proof of Theorem 6.10 is rather technical, so we only include a sketch of the proof here.

Sketch of the proof of Theorem 6.10. The first step is to define a 6-uniform hypergraph R with vertex set
V (H) × [2] and hyperedges encoding all of the sets in FT × [2] for each T from the proof of Lemma 6.11.
Namely, the hyperedges of R correspond to the unions of vertices involved in all possible forced triangles
in H (excluding the vertices in the central triangle), along with the (shared) color of the vertices in the
forced triangle. It is simple to show via degree of freedom counting arguments that e(R) = Θ(n6), and, for
1 ≤ t ≤ 6,

∆t(R) = O(n5−t) = O

(
pt−1
H · e(R)

v(R)

)
.

This means we can apply the hypergraph container lemma (Theorem 4.3) to R with τ = pH to get a
relatively small family C of containers (each corresponding to partial colorings) containing all partial colorings
of V (H) inducing few forced triangles. Crucially, (A5) implies that for each partial 2-coloring ψ of V (H)
with ψ ⊆ C ∈ C we have a strong bound on the number of hyperedges with two vertices colored the same
color.

The next step is to suppose that S ∼ G(n, p) violates the statement for the theorem. That is, let S be
such that there is a partial 2-coloring ψ of S coloring at least two out of three vertices the same color in at
least c1v(H) hyperedges, but simultaneously inducing at most c2e(H) forced triangles (for constants c1, c2
suitably defined with respect to the constants resultant from the container lemma). Choosing c2 such that
ψ ⊂ C for some C ∈ C, one can argue that the random sample is “biased” toward C. It is possible to show
that such a bias toward a given container C is sufficiently unlikely (using concentration inequalities such as
Janson’s inequality, see Theorem 2.1) so that, even after union bounding over all containers, the probability
of such a bias toward any container is o(1).

6.4 Tying it all together
As a reminder, our goal is to derive a contradiction with the dichotomy version of Friedgut’s criterion,
Theorem 3.16. By Theorem 6.12, choosing the ε for the theorem to be ε/8, with probability at least 1− ε/8,
for S ∼ G(n, p), for every partial 2-coloring ψ ∈ C, ψ induces Ω(e(H)) distinct centers of forced triangles.
Then, since Pr[S ∈ S ′′] ≥ ε/4, by Lemma 6.9, with probability at least ε/8, there exists a family C of partial
colorings of S such that:

1. All proper 2-colorings ψ of S are extensions of some coloring in C.

2. The family C satisfies |C| = exp(o(|S|)).

3. Every partial coloring ψ ∈ C induces Ω(e(H)) distinct centers of forced triangles.
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By the Chernoff bound, for any constant c > 1, adding the assumption that

pv(H)/c ≤ |S| ≤ cpv(H)

only decreases the probability of this event to at least ε/8− o(1).
Now, suppose that we could show that, for a given ψ ∈ C, G(n, εp)∪S does not include one of the distinct

centers of a forced triangle induced by ψ with probability at most PJ . Then, union bounding over all ψ ∈ C,
we would get that G(n, εp) ∪ S does not include one of distinct centers for some ψ with probability at most
PJ · exp(o(|S|)). Since all proper 2-colorings of G(n, εp) ∪ S are extensions of proper 2-colorings of S, and
these are in turn extensions of some partial 2-coloring ψ ∈ C, this would imply that G(n, εp)∪ S is properly
2-colorable with probability at most PJ exp(o(|S|)). That is, S ∪ G(n, εp) is 2-Ramsey for a triangle with
probability at least 1−PJ exp(o(|S|)). But, since S ∈ S ′′ ⊆ S, S∪G(n, εp) should be 2-Ramsey for a triangle
with probability at most 1/2. Hence, if we show PJ = exp(−Ω(|S|)) = exp(−Ω(p · v(H))), we will get the
desired contradiction, proving Theorem 6.1.

The last ingredient of the proof of Theorem 6.1 is then showing that

PJ = exp(−Ω(p · v(H))) = exp(−Ω(n3/2)).

The appropriate tool for the job turns out to be Janson’s inequality. Using Janson’s inequality, we prove the
following.

Lemma 6.13. Let E ⊂ E(H) with |E| = Ω(e(H)). Then,

Pr[E ̸⊆ G(n, εp) for all E ∈ E ] ≤ exp(−Θ(n3/2)).

Proof. Enumerate the edges in E and let Ai be the event that Ei ⊆ G(n, εp). Now,

Var′(A1, . . . , A|E|) ≤ e(H)p3 + v(H)n2p5 = Θ(n3/2).

The first term is the contribution from edges and themselves, and the second is from pairs of hyperedges
intersecting on a single vertex. (The latter case corresponds to two triangles overlapping on an edge.) Letting
X =

∑
i∈[|E|] 1Ai , E[X] = Θ(p3e(H)) = Θ(n3/2). Then, by Janson’s inequality,

Pr[X = 0] ≤ exp(−Θ(n3/2)),

as desired.

The fact that PJ = exp(−Ω(n3/2)) then follows, completing the proof of Theorem 6.1.

7 Closing Remarks
Over the course of this exposition, we showed that the property of being 2-Ramsey for a triangle has a
sharp threshold (Theorem 6.1). A number of powerful and widely applicable tools arose along the way. This
includes:

• Friedgut’s criterion for symmetric monotone properties with a coarse threshold (Theorem 3.2) and its
more practical dichotomy corollary (Theorem 3.16).

• Boolean Fourier analytic methods (introduced in Definition 3.1 and Proposition 3.3).

• The hypergraph container lemma, at least as stated in [FKSS22] (Theorem 4.3).

• Jansen’s concentration inequality (Theorem 2.1).

Although our discussion was focused on random graphs for simplicity, most of it immediately generalizes
to random sets (with each element added independently at random from some universe set with probability
p). Indeed, some of the earliest work studying probability thresholds was in this setting ([Sch16, VdW27]).
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Our proof of Theorem 6.1 is based on the more general argument given in [FKSS22]. In that work, they
show that r-colorability of any hypergraph satisfying suitably generalized versions of (A1)–(A5) has a sharp
threshold. This implies sharp thresholds for a wide range of properties. For example, an argument akin to
Section 6 can be used to prove that the properties of being r-Ramsey for Kk, for any fixed k, and r-Ramsey
for H bounded and nearly-bipartite1 have sharp thresholds.

While much is now known about monotone graph properties with a sharp threshold, there is considerable
room for future work. One avenue is to consider thresholds of properties of more structured random objects.
For example, in the G(n, p) model, all of the random graphs are subgraphs of Kn. Another perfectly valid
model is to start with some other family of “host” graphs G on n vertices and keep each edge independently
with probability p. Perhaps the most basic property to consider is connectivity, and problems of this kind
have already been studied: for hypercubes, there is a sharp threshold at p = 1/2 [Bur77]; for Cartesian
products of complete graphs, so called “Hamming graphs,” a sharp threshold is known [FvdHH16]; and
for Ω(

√
n)-regular, Ω(

√
n)-edge connected graphs, a sharp threshold is also known [GLL21]. Although the

graph families considered in [GLL21] are more general than in the other works, they are still significantly
constrained. One interesting future direction would be to try and characterize the families of host graphs
for which connectivity has a sharp threshold. The answer is not all graphs as illustrated by the following
example.

Example 7.1 (Host graphs without a sharp threshold for connectivity). Consider the family of graphs
composed of two disjoint copies of Kn/2 with a cut edge between them. In order for a subgraph of this
family to be connected, it must contain the cut edge and must be connected on either side of the cut edge.
The property of containing the cut edge evidently has a coarse threshold at p = Θ(1). Moreover, connectivity
on either side of the cut edge is ensured for p = ω( lognn ).

The example still holds if f(n) = o(n/ log n) edges are added between the disjoint copies of Kn/2. In this
case, in order to have one of those edges with constant probability, we need p = Ω(1/f(n)) = ω( lognn ). The
threshold will also still be coarse around p(n) = 1/f(n).

Notably, none of the previous work on these problems made use of the hypergraph container method.
One promising aspect of the container method in this context is that the subgraphs certifying connectivity
can potentially be small, unlike in the general case, facilitating the creation of bounded uniformity encoding
hypergraphs as in Section 6.2.

Imposing an ambient metric space is another way to add structure to the G(n, p) model. Random
geometric graphs are an example of this. One model is to build a graph by selecting n points from the unit
disk, independently and uniformly at random, connecting them by an edge if their Euclidean distance is at
most r. The threshold parameter is then r rather than the p from before. A sharp threshold for connectivity
is known in this setting [GK99], and thresholds for other properties have been studied, for example planarity
[BKMS20]. However, for properties other than connectivity, sharpness of the threshold probabilities is poorly
understood, even though sometimes the sharpness of the respective properties in the G(n, p) model is known
(e.g., in [ŁPW94] they prove that there is a sharp threshold for planarity at p = 1/n). Once again, perhaps
the hypergraph container method provides a way forward.
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